Spaces:
Running
Running
File size: 40,576 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 |
"""Implementation of :class:`Domain` class. """
from __future__ import annotations
from typing import Any
from sympy.core.numbers import AlgebraicNumber
from sympy.core import Basic, sympify
from sympy.core.sorting import ordered
from sympy.external.gmpy import GROUND_TYPES
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
from sympy.polys.polyutils import _unify_gens, _not_a_coeff
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
@public
class Domain:
"""Superclass for all domains in the polys domains system.
See :ref:`polys-domainsintro` for an introductory explanation of the
domains system.
The :py:class:`~.Domain` class is an abstract base class for all of the
concrete domain types. There are many different :py:class:`~.Domain`
subclasses each of which has an associated ``dtype`` which is a class
representing the elements of the domain. The coefficients of a
:py:class:`~.Poly` are elements of a domain which must be a subclass of
:py:class:`~.Domain`.
Examples
========
The most common example domains are the integers :ref:`ZZ` and the
rationals :ref:`QQ`.
>>> from sympy import Poly, symbols, Domain
>>> x, y = symbols('x, y')
>>> p = Poly(x**2 + y)
>>> p
Poly(x**2 + y, x, y, domain='ZZ')
>>> p.domain
ZZ
>>> isinstance(p.domain, Domain)
True
>>> Poly(x**2 + y/2)
Poly(x**2 + 1/2*y, x, y, domain='QQ')
The domains can be used directly in which case the domain object e.g.
(:ref:`ZZ` or :ref:`QQ`) can be used as a constructor for elements of
``dtype``.
>>> from sympy import ZZ, QQ
>>> ZZ(2)
2
>>> ZZ.dtype # doctest: +SKIP
<class 'int'>
>>> type(ZZ(2)) # doctest: +SKIP
<class 'int'>
>>> QQ(1, 2)
1/2
>>> type(QQ(1, 2)) # doctest: +SKIP
<class 'sympy.polys.domains.pythonrational.PythonRational'>
The corresponding domain elements can be used with the arithmetic
operations ``+,-,*,**`` and depending on the domain some combination of
``/,//,%`` might be usable. For example in :ref:`ZZ` both ``//`` (floor
division) and ``%`` (modulo division) can be used but ``/`` (true
division) cannot. Since :ref:`QQ` is a :py:class:`~.Field` its elements
can be used with ``/`` but ``//`` and ``%`` should not be used. Some
domains have a :py:meth:`~.Domain.gcd` method.
>>> ZZ(2) + ZZ(3)
5
>>> ZZ(5) // ZZ(2)
2
>>> ZZ(5) % ZZ(2)
1
>>> QQ(1, 2) / QQ(2, 3)
3/4
>>> ZZ.gcd(ZZ(4), ZZ(2))
2
>>> QQ.gcd(QQ(2,7), QQ(5,3))
1/21
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
There are also many other domains including:
1. :ref:`GF(p)` for finite fields of prime order.
2. :ref:`RR` for real (floating point) numbers.
3. :ref:`CC` for complex (floating point) numbers.
4. :ref:`QQ(a)` for algebraic number fields.
5. :ref:`K[x]` for polynomial rings.
6. :ref:`K(x)` for rational function fields.
7. :ref:`EX` for arbitrary expressions.
Each domain is represented by a domain object and also an implementation
class (``dtype``) for the elements of the domain. For example the
:ref:`K[x]` domains are represented by a domain object which is an
instance of :py:class:`~.PolynomialRing` and the elements are always
instances of :py:class:`~.PolyElement`. The implementation class
represents particular types of mathematical expressions in a way that is
more efficient than a normal SymPy expression which is of type
:py:class:`~.Expr`. The domain methods :py:meth:`~.Domain.from_sympy` and
:py:meth:`~.Domain.to_sympy` are used to convert from :py:class:`~.Expr`
to a domain element and vice versa.
>>> from sympy import Symbol, ZZ, Expr
>>> x = Symbol('x')
>>> K = ZZ[x] # polynomial ring domain
>>> K
ZZ[x]
>>> type(K) # class of the domain
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
>>> K.dtype # class of the elements
<class 'sympy.polys.rings.PolyElement'>
>>> p_expr = x**2 + 1 # Expr
>>> p_expr
x**2 + 1
>>> type(p_expr)
<class 'sympy.core.add.Add'>
>>> isinstance(p_expr, Expr)
True
>>> p_domain = K.from_sympy(p_expr)
>>> p_domain # domain element
x**2 + 1
>>> type(p_domain)
<class 'sympy.polys.rings.PolyElement'>
>>> K.to_sympy(p_domain) == p_expr
True
The :py:meth:`~.Domain.convert_from` method is used to convert domain
elements from one domain to another.
>>> from sympy import ZZ, QQ
>>> ez = ZZ(2)
>>> eq = QQ.convert_from(ez, ZZ)
>>> type(ez) # doctest: +SKIP
<class 'int'>
>>> type(eq) # doctest: +SKIP
<class 'sympy.polys.domains.pythonrational.PythonRational'>
Elements from different domains should not be mixed in arithmetic or other
operations: they should be converted to a common domain first. The domain
method :py:meth:`~.Domain.unify` is used to find a domain that can
represent all the elements of two given domains.
>>> from sympy import ZZ, QQ, symbols
>>> x, y = symbols('x, y')
>>> ZZ.unify(QQ)
QQ
>>> ZZ[x].unify(QQ)
QQ[x]
>>> ZZ[x].unify(QQ[y])
QQ[x,y]
If a domain is a :py:class:`~.Ring` then is might have an associated
:py:class:`~.Field` and vice versa. The :py:meth:`~.Domain.get_field` and
:py:meth:`~.Domain.get_ring` methods will find or create the associated
domain.
>>> from sympy import ZZ, QQ, Symbol
>>> x = Symbol('x')
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
>>> QQ.has_assoc_Ring
True
>>> QQ.get_ring()
ZZ
>>> K = QQ[x]
>>> K
QQ[x]
>>> K.get_field()
QQ(x)
See also
========
DomainElement: abstract base class for domain elements
construct_domain: construct a minimal domain for some expressions
"""
dtype: type | None = None
"""The type (class) of the elements of this :py:class:`~.Domain`:
>>> from sympy import ZZ, QQ, Symbol
>>> ZZ.dtype
<class 'int'>
>>> z = ZZ(2)
>>> z
2
>>> type(z)
<class 'int'>
>>> type(z) == ZZ.dtype
True
Every domain has an associated **dtype** ("datatype") which is the
class of the associated domain elements.
See also
========
of_type
"""
zero: Any = None
"""The zero element of the :py:class:`~.Domain`:
>>> from sympy import QQ
>>> QQ.zero
0
>>> QQ.of_type(QQ.zero)
True
See also
========
of_type
one
"""
one: Any = None
"""The one element of the :py:class:`~.Domain`:
>>> from sympy import QQ
>>> QQ.one
1
>>> QQ.of_type(QQ.one)
True
See also
========
of_type
zero
"""
is_Ring = False
"""Boolean flag indicating if the domain is a :py:class:`~.Ring`.
>>> from sympy import ZZ
>>> ZZ.is_Ring
True
Basically every :py:class:`~.Domain` represents a ring so this flag is
not that useful.
See also
========
is_PID
is_Field
get_ring
has_assoc_Ring
"""
is_Field = False
"""Boolean flag indicating if the domain is a :py:class:`~.Field`.
>>> from sympy import ZZ, QQ
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
See also
========
is_PID
is_Ring
get_field
has_assoc_Field
"""
has_assoc_Ring = False
"""Boolean flag indicating if the domain has an associated
:py:class:`~.Ring`.
>>> from sympy import QQ
>>> QQ.has_assoc_Ring
True
>>> QQ.get_ring()
ZZ
See also
========
is_Field
get_ring
"""
has_assoc_Field = False
"""Boolean flag indicating if the domain has an associated
:py:class:`~.Field`.
>>> from sympy import ZZ
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
See also
========
is_Field
get_field
"""
is_FiniteField = is_FF = False
is_IntegerRing = is_ZZ = False
is_RationalField = is_QQ = False
is_GaussianRing = is_ZZ_I = False
is_GaussianField = is_QQ_I = False
is_RealField = is_RR = False
is_ComplexField = is_CC = False
is_AlgebraicField = is_Algebraic = False
is_PolynomialRing = is_Poly = False
is_FractionField = is_Frac = False
is_SymbolicDomain = is_EX = False
is_SymbolicRawDomain = is_EXRAW = False
is_FiniteExtension = False
is_Exact = True
is_Numerical = False
is_Simple = False
is_Composite = False
is_PID = False
"""Boolean flag indicating if the domain is a `principal ideal domain`_.
>>> from sympy import ZZ
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
.. _principal ideal domain: https://en.wikipedia.org/wiki/Principal_ideal_domain
See also
========
is_Field
get_field
"""
has_CharacteristicZero = False
rep: str | None = None
alias: str | None = None
def __init__(self):
raise NotImplementedError
def __str__(self):
return self.rep
def __repr__(self):
return str(self)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype))
def new(self, *args):
return self.dtype(*args)
@property
def tp(self):
"""Alias for :py:attr:`~.Domain.dtype`"""
return self.dtype
def __call__(self, *args):
"""Construct an element of ``self`` domain from ``args``. """
return self.new(*args)
def normal(self, *args):
return self.dtype(*args)
def convert_from(self, element, base):
"""Convert ``element`` to ``self.dtype`` given the base domain. """
if base.alias is not None:
method = "from_" + base.alias
else:
method = "from_" + base.__class__.__name__
_convert = getattr(self, method)
if _convert is not None:
result = _convert(element, base)
if result is not None:
return result
raise CoercionFailed("Cannot convert %s of type %s from %s to %s" % (element, type(element), base, self))
def convert(self, element, base=None):
"""Convert ``element`` to ``self.dtype``. """
if base is not None:
if _not_a_coeff(element):
raise CoercionFailed('%s is not in any domain' % element)
return self.convert_from(element, base)
if self.of_type(element):
return element
if _not_a_coeff(element):
raise CoercionFailed('%s is not in any domain' % element)
from sympy.polys.domains import ZZ, QQ, RealField, ComplexField
if ZZ.of_type(element):
return self.convert_from(element, ZZ)
if isinstance(element, int):
return self.convert_from(ZZ(element), ZZ)
if GROUND_TYPES != 'python':
if isinstance(element, ZZ.tp):
return self.convert_from(element, ZZ)
if isinstance(element, QQ.tp):
return self.convert_from(element, QQ)
if isinstance(element, float):
parent = RealField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, complex):
parent = ComplexField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, DomainElement):
return self.convert_from(element, element.parent())
# TODO: implement this in from_ methods
if self.is_Numerical and getattr(element, 'is_ground', False):
return self.convert(element.LC())
if isinstance(element, Basic):
try:
return self.from_sympy(element)
except (TypeError, ValueError):
pass
else: # TODO: remove this branch
if not is_sequence(element):
try:
element = sympify(element, strict=True)
if isinstance(element, Basic):
return self.from_sympy(element)
except (TypeError, ValueError):
pass
raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
def of_type(self, element):
"""Check if ``a`` is of type ``dtype``. """
return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
def __contains__(self, a):
"""Check if ``a`` belongs to this domain. """
try:
if _not_a_coeff(a):
raise CoercionFailed
self.convert(a) # this might raise, too
except CoercionFailed:
return False
return True
def to_sympy(self, a):
"""Convert domain element *a* to a SymPy expression (Expr).
Explanation
===========
Convert a :py:class:`~.Domain` element *a* to :py:class:`~.Expr`. Most
public SymPy functions work with objects of type :py:class:`~.Expr`.
The elements of a :py:class:`~.Domain` have a different internal
representation. It is not possible to mix domain elements with
:py:class:`~.Expr` so each domain has :py:meth:`~.Domain.to_sympy` and
:py:meth:`~.Domain.from_sympy` methods to convert its domain elements
to and from :py:class:`~.Expr`.
Parameters
==========
a: domain element
An element of this :py:class:`~.Domain`.
Returns
=======
expr: Expr
A normal SymPy expression of type :py:class:`~.Expr`.
Examples
========
Construct an element of the :ref:`QQ` domain and then convert it to
:py:class:`~.Expr`.
>>> from sympy import QQ, Expr
>>> q_domain = QQ(2)
>>> q_domain
2
>>> q_expr = QQ.to_sympy(q_domain)
>>> q_expr
2
Although the printed forms look similar these objects are not of the
same type.
>>> isinstance(q_domain, Expr)
False
>>> isinstance(q_expr, Expr)
True
Construct an element of :ref:`K[x]` and convert to
:py:class:`~.Expr`.
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> K = QQ[x]
>>> x_domain = K.gens[0] # generator x as a domain element
>>> p_domain = x_domain**2/3 + 1
>>> p_domain
1/3*x**2 + 1
>>> p_expr = K.to_sympy(p_domain)
>>> p_expr
x**2/3 + 1
The :py:meth:`~.Domain.from_sympy` method is used for the opposite
conversion from a normal SymPy expression to a domain element.
>>> p_domain == p_expr
False
>>> K.from_sympy(p_expr) == p_domain
True
>>> K.to_sympy(p_domain) == p_expr
True
>>> K.from_sympy(K.to_sympy(p_domain)) == p_domain
True
>>> K.to_sympy(K.from_sympy(p_expr)) == p_expr
True
The :py:meth:`~.Domain.from_sympy` method makes it easier to construct
domain elements interactively.
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> K = QQ[x]
>>> K.from_sympy(x**2/3 + 1)
1/3*x**2 + 1
See also
========
from_sympy
convert_from
"""
raise NotImplementedError
def from_sympy(self, a):
"""Convert a SymPy expression to an element of this domain.
Explanation
===========
See :py:meth:`~.Domain.to_sympy` for explanation and examples.
Parameters
==========
expr: Expr
A normal SymPy expression of type :py:class:`~.Expr`.
Returns
=======
a: domain element
An element of this :py:class:`~.Domain`.
See also
========
to_sympy
convert_from
"""
raise NotImplementedError
def sum(self, args):
return sum(args, start=self.zero)
def from_FF(K1, a, K0):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return None
def from_FF_python(K1, a, K0):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return None
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return None
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return None
def from_FF_gmpy(K1, a, K0):
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
return None
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return None
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return None
def from_RealField(K1, a, K0):
"""Convert a real element object to ``dtype``. """
return None
def from_ComplexField(K1, a, K0):
"""Convert a complex element to ``dtype``. """
return None
def from_AlgebraicField(K1, a, K0):
"""Convert an algebraic number to ``dtype``. """
return None
def from_PolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.is_ground:
return K1.convert(a.LC, K0.dom)
def from_FractionField(K1, a, K0):
"""Convert a rational function to ``dtype``. """
return None
def from_MonogenicFiniteExtension(K1, a, K0):
"""Convert an ``ExtensionElement`` to ``dtype``. """
return K1.convert_from(a.rep, K0.ring)
def from_ExpressionDomain(K1, a, K0):
"""Convert a ``EX`` object to ``dtype``. """
return K1.from_sympy(a.ex)
def from_ExpressionRawDomain(K1, a, K0):
"""Convert a ``EX`` object to ``dtype``. """
return K1.from_sympy(a)
def from_GlobalPolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.degree() <= 0:
return K1.convert(a.LC(), K0.dom)
def from_GeneralizedPolynomialRing(K1, a, K0):
return K1.from_FractionField(a, K0)
def unify_with_symbols(K0, K1, symbols):
if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
raise UnificationFailed("Cannot unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
return K0.unify(K1)
def unify_composite(K0, K1):
"""Unify two domains where at least one is composite."""
K0_ground = K0.dom if K0.is_Composite else K0
K1_ground = K1.dom if K1.is_Composite else K1
K0_symbols = K0.symbols if K0.is_Composite else ()
K1_symbols = K1.symbols if K1.is_Composite else ()
domain = K0_ground.unify(K1_ground)
symbols = _unify_gens(K0_symbols, K1_symbols)
order = K0.order if K0.is_Composite else K1.order
# E.g. ZZ[x].unify(QQ.frac_field(x)) -> ZZ.frac_field(x)
if ((K0.is_FractionField and K1.is_PolynomialRing or
K1.is_FractionField and K0.is_PolynomialRing) and
(not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field
and domain.has_assoc_Ring):
domain = domain.get_ring()
if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
cls = K0.__class__
else:
cls = K1.__class__
# Here cls might be PolynomialRing, FractionField, GlobalPolynomialRing
# (dense/old Polynomialring) or dense/old FractionField.
from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
if cls == GlobalPolynomialRing:
return cls(domain, symbols)
return cls(domain, symbols, order)
def unify(K0, K1, symbols=None):
"""
Construct a minimal domain that contains elements of ``K0`` and ``K1``.
Known domains (from smallest to largest):
- ``GF(p)``
- ``ZZ``
- ``QQ``
- ``RR(prec, tol)``
- ``CC(prec, tol)``
- ``ALG(a, b, c)``
- ``K[x, y, z]``
- ``K(x, y, z)``
- ``EX``
"""
if symbols is not None:
return K0.unify_with_symbols(K1, symbols)
if K0 == K1:
return K0
if not (K0.has_CharacteristicZero and K1.has_CharacteristicZero):
# Reject unification of domains with different characteristics.
if K0.characteristic() != K1.characteristic():
raise UnificationFailed("Cannot unify %s with %s" % (K0, K1))
# We do not get here if K0 == K1. The two domains have the same
# characteristic but are unequal so at least one is composite and
# we are unifying something like GF(3).unify(GF(3)[x]).
return K0.unify_composite(K1)
# From here we know both domains have characteristic zero and it can be
# acceptable to fall back on EX.
if K0.is_EXRAW:
return K0
if K1.is_EXRAW:
return K1
if K0.is_EX:
return K0
if K1.is_EX:
return K1
if K0.is_FiniteExtension or K1.is_FiniteExtension:
if K1.is_FiniteExtension:
K0, K1 = K1, K0
if K1.is_FiniteExtension:
# Unifying two extensions.
# Try to ensure that K0.unify(K1) == K1.unify(K0)
if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus:
K0, K1 = K1, K0
return K1.set_domain(K0)
else:
# Drop the generator from other and unify with the base domain
K1 = K1.drop(K0.symbol)
K1 = K0.domain.unify(K1)
return K0.set_domain(K1)
if K0.is_Composite or K1.is_Composite:
return K0.unify_composite(K1)
def mkinexact(cls, K0, K1):
prec = max(K0.precision, K1.precision)
tol = max(K0.tolerance, K1.tolerance)
return cls(prec=prec, tol=tol)
if K1.is_ComplexField:
K0, K1 = K1, K0
if K0.is_ComplexField:
if K1.is_ComplexField or K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
else:
return K0
if K1.is_RealField:
K0, K1 = K1, K0
if K0.is_RealField:
if K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
elif K1.is_GaussianRing or K1.is_GaussianField:
from sympy.polys.domains.complexfield import ComplexField
return ComplexField(prec=K0.precision, tol=K0.tolerance)
else:
return K0
if K1.is_AlgebraicField:
K0, K1 = K1, K0
if K0.is_AlgebraicField:
if K1.is_GaussianRing:
K1 = K1.get_field()
if K1.is_GaussianField:
K1 = K1.as_AlgebraicField()
if K1.is_AlgebraicField:
return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
else:
return K0
if K0.is_GaussianField:
return K0
if K1.is_GaussianField:
return K1
if K0.is_GaussianRing:
if K1.is_RationalField:
K0 = K0.get_field()
return K0
if K1.is_GaussianRing:
if K0.is_RationalField:
K1 = K1.get_field()
return K1
if K0.is_RationalField:
return K0
if K1.is_RationalField:
return K1
if K0.is_IntegerRing:
return K0
if K1.is_IntegerRing:
return K1
from sympy.polys.domains import EX
return EX
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
# XXX: Remove this.
return isinstance(other, Domain) and self.dtype == other.dtype
def __ne__(self, other):
"""Returns ``False`` if two domains are equivalent. """
return not self == other
def map(self, seq):
"""Rersively apply ``self`` to all elements of ``seq``. """
result = []
for elt in seq:
if isinstance(elt, list):
result.append(self.map(elt))
else:
result.append(self(elt))
return result
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError('there is no ring associated with %s' % self)
def get_field(self):
"""Returns a field associated with ``self``. """
raise DomainError('there is no field associated with %s' % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
return self
def __getitem__(self, symbols):
"""The mathematical way to make a polynomial ring. """
if hasattr(symbols, '__iter__'):
return self.poly_ring(*symbols)
else:
return self.poly_ring(symbols)
def poly_ring(self, *symbols, order=lex):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.polynomialring import PolynomialRing
return PolynomialRing(self, symbols, order)
def frac_field(self, *symbols, order=lex):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.fractionfield import FractionField
return FractionField(self, symbols, order)
def old_poly_ring(self, *symbols, **kwargs):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.old_polynomialring import PolynomialRing
return PolynomialRing(self, *symbols, **kwargs)
def old_frac_field(self, *symbols, **kwargs):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.old_fractionfield import FractionField
return FractionField(self, *symbols, **kwargs)
def algebraic_field(self, *extension, alias=None):
r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
raise DomainError("Cannot create algebraic field over %s" % self)
def alg_field_from_poly(self, poly, alias=None, root_index=-1):
r"""
Convenience method to construct an algebraic extension on a root of a
polynomial, chosen by root index.
Parameters
==========
poly : :py:class:`~.Poly`
The polynomial whose root generates the extension.
alias : str, optional (default=None)
Symbol name for the generator of the extension.
E.g. "alpha" or "theta".
root_index : int, optional (default=-1)
Specifies which root of the polynomial is desired. The ordering is
as defined by the :py:class:`~.ComplexRootOf` class. The default of
``-1`` selects the most natural choice in the common cases of
quadratic and cyclotomic fields (the square root on the positive
real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).
Examples
========
>>> from sympy import QQ, Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 - 2)
>>> K = QQ.alg_field_from_poly(f)
>>> K.ext.minpoly == f
True
>>> g = Poly(8*x**3 - 6*x - 1)
>>> L = QQ.alg_field_from_poly(g, "alpha")
>>> L.ext.minpoly == g
True
>>> L.to_sympy(L([1, 1, 1]))
alpha**2 + alpha + 1
"""
from sympy.polys.rootoftools import CRootOf
root = CRootOf(poly, root_index)
alpha = AlgebraicNumber(root, alias=alias)
return self.algebraic_field(alpha, alias=alias)
def cyclotomic_field(self, n, ss=False, alias="zeta", gen=None, root_index=-1):
r"""
Convenience method to construct a cyclotomic field.
Parameters
==========
n : int
Construct the nth cyclotomic field.
ss : boolean, optional (default=False)
If True, append *n* as a subscript on the alias string.
alias : str, optional (default="zeta")
Symbol name for the generator.
gen : :py:class:`~.Symbol`, optional (default=None)
Desired variable for the cyclotomic polynomial that defines the
field. If ``None``, a dummy variable will be used.
root_index : int, optional (default=-1)
Specifies which root of the polynomial is desired. The ordering is
as defined by the :py:class:`~.ComplexRootOf` class. The default of
``-1`` selects the root $\mathrm{e}^{2\pi i/n}$.
Examples
========
>>> from sympy import QQ, latex
>>> K = QQ.cyclotomic_field(5)
>>> K.to_sympy(K([-1, 1]))
1 - zeta
>>> L = QQ.cyclotomic_field(7, True)
>>> a = L.to_sympy(L([-1, 1]))
>>> print(a)
1 - zeta7
>>> print(latex(a))
1 - \zeta_{7}
"""
from sympy.polys.specialpolys import cyclotomic_poly
if ss:
alias += str(n)
return self.alg_field_from_poly(cyclotomic_poly(n, gen), alias=alias,
root_index=root_index)
def inject(self, *symbols):
"""Inject generators into this domain. """
raise NotImplementedError
def drop(self, *symbols):
"""Drop generators from this domain. """
if self.is_Simple:
return self
raise NotImplementedError # pragma: no cover
def is_zero(self, a):
"""Returns True if ``a`` is zero. """
return not a
def is_one(self, a):
"""Returns True if ``a`` is one. """
return a == self.one
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return a > 0
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return a < 0
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return a <= 0
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return a >= 0
def canonical_unit(self, a):
if self.is_negative(a):
return -self.one
else:
return self.one
def abs(self, a):
"""Absolute value of ``a``, implies ``__abs__``. """
return abs(a)
def neg(self, a):
"""Returns ``a`` negated, implies ``__neg__``. """
return -a
def pos(self, a):
"""Returns ``a`` positive, implies ``__pos__``. """
return +a
def add(self, a, b):
"""Sum of ``a`` and ``b``, implies ``__add__``. """
return a + b
def sub(self, a, b):
"""Difference of ``a`` and ``b``, implies ``__sub__``. """
return a - b
def mul(self, a, b):
"""Product of ``a`` and ``b``, implies ``__mul__``. """
return a * b
def pow(self, a, b):
"""Raise ``a`` to power ``b``, implies ``__pow__``. """
return a ** b
def exquo(self, a, b):
"""Exact quotient of *a* and *b*. Analogue of ``a / b``.
Explanation
===========
This is essentially the same as ``a / b`` except that an error will be
raised if the division is inexact (if there is any remainder) and the
result will always be a domain element. When working in a
:py:class:`~.Domain` that is not a :py:class:`~.Field` (e.g. :ref:`ZZ`
or :ref:`K[x]`) ``exquo`` should be used instead of ``/``.
The key invariant is that if ``q = K.exquo(a, b)`` (and ``exquo`` does
not raise an exception) then ``a == b*q``.
Examples
========
We can use ``K.exquo`` instead of ``/`` for exact division.
>>> from sympy import ZZ
>>> ZZ.exquo(ZZ(4), ZZ(2))
2
>>> ZZ.exquo(ZZ(5), ZZ(2))
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 5 in ZZ
Over a :py:class:`~.Field` such as :ref:`QQ`, division (with nonzero
divisor) is always exact so in that case ``/`` can be used instead of
:py:meth:`~.Domain.exquo`.
>>> from sympy import QQ
>>> QQ.exquo(QQ(5), QQ(2))
5/2
>>> QQ(5) / QQ(2)
5/2
Parameters
==========
a: domain element
The dividend
b: domain element
The divisor
Returns
=======
q: domain element
The exact quotient
Raises
======
ExactQuotientFailed: if exact division is not possible.
ZeroDivisionError: when the divisor is zero.
See also
========
quo: Analogue of ``a // b``
rem: Analogue of ``a % b``
div: Analogue of ``divmod(a, b)``
Notes
=====
Since the default :py:attr:`~.Domain.dtype` for :ref:`ZZ` is ``int``
(or ``mpz``) division as ``a / b`` should not be used as it would give
a ``float`` which is not a domain element.
>>> ZZ(4) / ZZ(2) # doctest: +SKIP
2.0
>>> ZZ(5) / ZZ(2) # doctest: +SKIP
2.5
On the other hand with `SYMPY_GROUND_TYPES=flint` elements of :ref:`ZZ`
are ``flint.fmpz`` and division would raise an exception:
>>> ZZ(4) / ZZ(2) # doctest: +SKIP
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for /: 'fmpz' and 'fmpz'
Using ``/`` with :ref:`ZZ` will lead to incorrect results so
:py:meth:`~.Domain.exquo` should be used instead.
"""
raise NotImplementedError
def quo(self, a, b):
"""Quotient of *a* and *b*. Analogue of ``a // b``.
``K.quo(a, b)`` is equivalent to ``K.div(a, b)[0]``. See
:py:meth:`~.Domain.div` for more explanation.
See also
========
rem: Analogue of ``a % b``
div: Analogue of ``divmod(a, b)``
exquo: Analogue of ``a / b``
"""
raise NotImplementedError
def rem(self, a, b):
"""Modulo division of *a* and *b*. Analogue of ``a % b``.
``K.rem(a, b)`` is equivalent to ``K.div(a, b)[1]``. See
:py:meth:`~.Domain.div` for more explanation.
See also
========
quo: Analogue of ``a // b``
div: Analogue of ``divmod(a, b)``
exquo: Analogue of ``a / b``
"""
raise NotImplementedError
def div(self, a, b):
"""Quotient and remainder for *a* and *b*. Analogue of ``divmod(a, b)``
Explanation
===========
This is essentially the same as ``divmod(a, b)`` except that is more
consistent when working over some :py:class:`~.Field` domains such as
:ref:`QQ`. When working over an arbitrary :py:class:`~.Domain` the
:py:meth:`~.Domain.div` method should be used instead of ``divmod``.
The key invariant is that if ``q, r = K.div(a, b)`` then
``a == b*q + r``.
The result of ``K.div(a, b)`` is the same as the tuple
``(K.quo(a, b), K.rem(a, b))`` except that if both quotient and
remainder are needed then it is more efficient to use
:py:meth:`~.Domain.div`.
Examples
========
We can use ``K.div`` instead of ``divmod`` for floor division and
remainder.
>>> from sympy import ZZ, QQ
>>> ZZ.div(ZZ(5), ZZ(2))
(2, 1)
If ``K`` is a :py:class:`~.Field` then the division is always exact
with a remainder of :py:attr:`~.Domain.zero`.
>>> QQ.div(QQ(5), QQ(2))
(5/2, 0)
Parameters
==========
a: domain element
The dividend
b: domain element
The divisor
Returns
=======
(q, r): tuple of domain elements
The quotient and remainder
Raises
======
ZeroDivisionError: when the divisor is zero.
See also
========
quo: Analogue of ``a // b``
rem: Analogue of ``a % b``
exquo: Analogue of ``a / b``
Notes
=====
If ``gmpy`` is installed then the ``gmpy.mpq`` type will be used as
the :py:attr:`~.Domain.dtype` for :ref:`QQ`. The ``gmpy.mpq`` type
defines ``divmod`` in a way that is undesirable so
:py:meth:`~.Domain.div` should be used instead of ``divmod``.
>>> a = QQ(1)
>>> b = QQ(3, 2)
>>> a # doctest: +SKIP
mpq(1,1)
>>> b # doctest: +SKIP
mpq(3,2)
>>> divmod(a, b) # doctest: +SKIP
(mpz(0), mpq(1,1))
>>> QQ.div(a, b) # doctest: +SKIP
(mpq(2,3), mpq(0,1))
Using ``//`` or ``%`` with :ref:`QQ` will lead to incorrect results so
:py:meth:`~.Domain.div` should be used instead.
"""
raise NotImplementedError
def invert(self, a, b):
"""Returns inversion of ``a mod b``, implies something. """
raise NotImplementedError
def revert(self, a):
"""Returns ``a**(-1)`` if possible. """
raise NotImplementedError
def numer(self, a):
"""Returns numerator of ``a``. """
raise NotImplementedError
def denom(self, a):
"""Returns denominator of ``a``. """
raise NotImplementedError
def half_gcdex(self, a, b):
"""Half extended GCD of ``a`` and ``b``. """
s, t, h = self.gcdex(a, b)
return s, h
def gcdex(self, a, b):
"""Extended GCD of ``a`` and ``b``. """
raise NotImplementedError
def cofactors(self, a, b):
"""Returns GCD and cofactors of ``a`` and ``b``. """
gcd = self.gcd(a, b)
cfa = self.quo(a, gcd)
cfb = self.quo(b, gcd)
return gcd, cfa, cfb
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
raise NotImplementedError
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
raise NotImplementedError
def log(self, a, b):
"""Returns b-base logarithm of ``a``. """
raise NotImplementedError
def sqrt(self, a):
"""Returns a (possibly inexact) square root of ``a``.
Explanation
===========
There is no universal definition of "inexact square root" for all
domains. It is not recommended to implement this method for domains
other then :ref:`ZZ`.
See also
========
exsqrt
"""
raise NotImplementedError
def is_square(self, a):
"""Returns whether ``a`` is a square in the domain.
Explanation
===========
Returns ``True`` if there is an element ``b`` in the domain such that
``b * b == a``, otherwise returns ``False``. For inexact domains like
:ref:`RR` and :ref:`CC`, a tiny difference in this equality can be
tolerated.
See also
========
exsqrt
"""
raise NotImplementedError
def exsqrt(self, a):
"""Principal square root of a within the domain if ``a`` is square.
Explanation
===========
The implementation of this method should return an element ``b`` in the
domain such that ``b * b == a``, or ``None`` if there is no such ``b``.
For inexact domains like :ref:`RR` and :ref:`CC`, a tiny difference in
this equality can be tolerated. The choice of a "principal" square root
should follow a consistent rule whenever possible.
See also
========
sqrt, is_square
"""
raise NotImplementedError
def evalf(self, a, prec=None, **options):
"""Returns numerical approximation of ``a``. """
return self.to_sympy(a).evalf(prec, **options)
n = evalf
def real(self, a):
return a
def imag(self, a):
return self.zero
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return a == b
def characteristic(self):
"""Return the characteristic of this domain. """
raise NotImplementedError('characteristic()')
__all__ = ['Domain']
|