Spaces:
Running
Running
File size: 5,842 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
"""Implementation of :class:`ComplexField` class. """
from sympy.external.gmpy import SYMPY_INTS
from sympy.core.numbers import Float, I
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.gaussiandomains import QQ_I
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import DomainError, CoercionFailed
from sympy.utilities import public
@public
class ComplexField(Field, CharacteristicZero, SimpleDomain):
"""Complex numbers up to the given precision. """
rep = 'CC'
is_ComplexField = is_CC = True
is_Exact = False
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
_default_precision = 53
@property
def has_default_precision(self):
return self.precision == self._default_precision
@property
def precision(self):
return self._context.prec
@property
def dps(self):
return self._context.dps
@property
def tolerance(self):
return self._context.tolerance
def __init__(self, prec=_default_precision, dps=None, tol=None):
context = MPContext(prec, dps, tol, False)
context._parent = self
self._context = context
self._dtype = context.mpc
self.zero = self.dtype(0)
self.one = self.dtype(1)
@property
def tp(self):
# XXX: Domain treats tp as an alis of dtype. Here we need to two
# separate things: dtype is a callable to make/convert instances.
# We use tp with isinstance to check if an object is an instance
# of the domain already.
return self._dtype
def dtype(self, x, y=0):
# XXX: This is needed because mpmath does not recognise fmpz.
# It might be better to add conversion routines to mpmath and if that
# happens then this can be removed.
if isinstance(x, SYMPY_INTS):
x = int(x)
if isinstance(y, SYMPY_INTS):
y = int(y)
return self._dtype(x, y)
def __eq__(self, other):
return (isinstance(other, ComplexField)
and self.precision == other.precision
and self.tolerance == other.tolerance)
def __hash__(self):
return hash((self.__class__.__name__, self._dtype, self.precision, self.tolerance))
def to_sympy(self, element):
"""Convert ``element`` to SymPy number. """
return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
def from_sympy(self, expr):
"""Convert SymPy's number to ``dtype``. """
number = expr.evalf(n=self.dps)
real, imag = number.as_real_imag()
if real.is_Number and imag.is_Number:
return self.dtype(real, imag)
else:
raise CoercionFailed("expected complex number, got %s" % expr)
def from_ZZ(self, element, base):
return self.dtype(element)
def from_ZZ_gmpy(self, element, base):
return self.dtype(int(element))
def from_ZZ_python(self, element, base):
return self.dtype(element)
def from_QQ(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_QQ_python(self, element, base):
return self.dtype(element.numerator) / element.denominator
def from_QQ_gmpy(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_GaussianIntegerRing(self, element, base):
return self.dtype(int(element.x), int(element.y))
def from_GaussianRationalField(self, element, base):
x = element.x
y = element.y
return (self.dtype(int(x.numerator)) / int(x.denominator) +
self.dtype(0, int(y.numerator)) / int(y.denominator))
def from_AlgebraicField(self, element, base):
return self.from_sympy(base.to_sympy(element).evalf(self.dps))
def from_RealField(self, element, base):
return self.dtype(element)
def from_ComplexField(self, element, base):
if self == base:
return element
else:
return self.dtype(element)
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError("there is no ring associated with %s" % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
return QQ_I
def is_negative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
return self.one
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
return a*b
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return self._context.almosteq(a, b, tolerance)
def is_square(self, a):
"""Returns ``True``. Every complex number has a complex square root."""
return True
def exsqrt(self, a):
r"""Returns the principal complex square root of ``a``.
Explanation
===========
The argument of the principal square root is always within
$(-\frac{\pi}{2}, \frac{\pi}{2}]$. The square root may be
slightly inaccurate due to floating point rounding error.
"""
return a ** 0.5
CC = ComplexField()
|