Spaces:
Running
Running
File size: 21,639 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
"""Implementation of :class:`AlgebraicField` class. """
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyclasses import ANP
from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed
from sympy.utilities import public
@public
class AlgebraicField(Field, CharacteristicZero, SimpleDomain):
r"""Algebraic number field :ref:`QQ(a)`
A :ref:`QQ(a)` domain represents an `algebraic number field`_
`\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
A :py:class:`~.Poly` created from an expression involving `algebraic
numbers`_ will treat the algebraic numbers as generators if the generators
argument is not specified.
>>> from sympy import Poly, Symbol, sqrt
>>> x = Symbol('x')
>>> Poly(x**2 + sqrt(2))
Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ')
That is a multivariate polynomial with ``sqrt(2)`` treated as one of the
generators (variables). If the generators are explicitly specified then
``sqrt(2)`` will be considered to be a coefficient but by default the
:ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)`
domain the argument ``extension=True`` can be given.
>>> Poly(x**2 + sqrt(2), x)
Poly(x**2 + sqrt(2), x, domain='EX')
>>> Poly(x**2 + sqrt(2), x, extension=True)
Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>')
A generator of the algebraic field extension can also be specified
explicitly which is particularly useful if the coefficients are all
rational but an extension field is needed (e.g. to factor the
polynomial).
>>> Poly(x**2 + 1)
Poly(x**2 + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, extension=sqrt(2))
Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using
the ``extension`` argument to :py:func:`~.factor` or by specifying the domain
explicitly.
>>> from sympy import factor, QQ
>>> factor(x**2 - 2)
x**2 - 2
>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))
>>> factor(x**2 - 2, domain='QQ<sqrt(2)>')
(x - sqrt(2))*(x + sqrt(2))
>>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2)))
(x - sqrt(2))*(x + sqrt(2))
The ``extension=True`` argument can be used but will only create an
extension that contains the coefficients which is usually not enough to
factorise the polynomial.
>>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2)
>>> factor(p) # treats sqrt(2) as a symbol
(x + sqrt(2))*(x**2 - 2)
>>> factor(p, extension=True)
(x - sqrt(2))*(x + sqrt(2))**2
>>> factor(x**2 - 2, extension=True) # all rational coefficients
x**2 - 2
It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel`
and :py:func:`~.gcd` functions.
>>> from sympy import cancel, gcd
>>> cancel((x**2 - 2)/(x - sqrt(2)))
(x**2 - 2)/(x - sqrt(2))
>>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2))
x + sqrt(2)
>>> gcd(x**2 - 2, x - sqrt(2))
1
>>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2))
x - sqrt(2)
When using the domain directly :ref:`QQ(a)` can be used as a constructor
to create instances which then support the operations ``+,-,*,**,/``. The
:py:meth:`~.Domain.algebraic_field` method is used to construct a
particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method
can be used to create domain elements from normal SymPy expressions.
>>> K = QQ.algebraic_field(sqrt(2))
>>> K
QQ<sqrt(2)>
>>> xk = K.from_sympy(3 + 4*sqrt(2))
>>> xk # doctest: +SKIP
ANP([4, 3], [1, 0, -2], QQ)
Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have
limited printing support. The raw display shows the internal
representation of the element as the list ``[4, 3]`` representing the
coefficients of ``1`` and ``sqrt(2)`` for this element in the form
``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`.
The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in
the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use
:py:meth:`~.Domain.to_sympy` to get a better printed form for the
elements and to see the results of operations.
>>> xk = K.from_sympy(3 + 4*sqrt(2))
>>> yk = K.from_sympy(2 + 3*sqrt(2))
>>> xk * yk # doctest: +SKIP
ANP([17, 30], [1, 0, -2], QQ)
>>> K.to_sympy(xk * yk)
17*sqrt(2) + 30
>>> K.to_sympy(xk + yk)
5 + 7*sqrt(2)
>>> K.to_sympy(xk ** 2)
24*sqrt(2) + 41
>>> K.to_sympy(xk / yk)
sqrt(2)/14 + 9/7
Any expression representing an algebraic number can be used to generate
a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed.
The function :py:func:`~.minpoly` function is used for this.
>>> from sympy import exp, I, pi, minpoly
>>> g = exp(2*I*pi/3)
>>> g
exp(2*I*pi/3)
>>> g.is_algebraic
True
>>> minpoly(g, x)
x**2 + x + 1
>>> factor(x**3 - 1, extension=g)
(x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3))
It is also possible to make an algebraic field from multiple extension
elements.
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K
QQ<sqrt(2) + sqrt(3)>
>>> p = x**4 - 5*x**2 + 6
>>> factor(p)
(x**2 - 3)*(x**2 - 2)
>>> factor(p, domain=K)
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
>>> factor(p, extension=[sqrt(2), sqrt(3)])
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
Multiple extension elements are always combined together to make a single
`primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive
element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays
as ``QQ<sqrt(2) + sqrt(3)>``. The minimal polynomial for the primitive
element is computed using the :py:func:`~.primitive_element` function.
>>> from sympy import primitive_element
>>> primitive_element([sqrt(2), sqrt(3)], x)
(x**4 - 10*x**2 + 1, [1, 1])
>>> minpoly(sqrt(2) + sqrt(3), x)
x**4 - 10*x**2 + 1
The extension elements that generate the domain can be accessed from the
domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as
instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for
the primitive element as a :py:class:`~.DMP` instance is available as
:py:attr:`~.mod`.
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K
QQ<sqrt(2) + sqrt(3)>
>>> K.ext
sqrt(2) + sqrt(3)
>>> K.orig_ext
(sqrt(2), sqrt(3))
>>> K.mod # doctest: +SKIP
DMP_Python([1, 0, -10, 0, 1], QQ)
The `discriminant`_ of the field can be obtained from the
:py:meth:`~.discriminant` method, and an `integral basis`_ from the
:py:meth:`~.integral_basis` method. The latter returns a list of
:py:class:`~.ANP` instances by default, but can be made to return instances
of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt``
argument. The maximal order, or ring of integers, of the field can also be
obtained from the :py:meth:`~.maximal_order` method, as a
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
>>> zeta5 = exp(2*I*pi/5)
>>> K = QQ.algebraic_field(zeta5)
>>> K
QQ<exp(2*I*pi/5)>
>>> K.discriminant()
125
>>> K = QQ.algebraic_field(sqrt(5))
>>> K
QQ<sqrt(5)>
>>> K.integral_basis(fmt='sympy')
[1, 1/2 + sqrt(5)/2]
>>> K.maximal_order()
Submodule[[2, 0], [1, 1]]/2
The factorization of a rational prime into prime ideals of the field is
computed by the :py:meth:`~.primes_above` method, which returns a list
of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances.
>>> zeta7 = exp(2*I*pi/7)
>>> K = QQ.algebraic_field(zeta7)
>>> K
QQ<exp(2*I*pi/7)>
>>> K.primes_above(11)
[(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)]
The Galois group of the Galois closure of the field can be computed (when
the minimal polynomial of the field is of sufficiently small degree).
>>> K.galois_group(by_name=True)[0]
S6TransitiveSubgroups.C6
Notes
=====
It is not currently possible to generate an algebraic extension over any
domain other than :ref:`QQ`. Ideally it would be possible to generate
extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the
quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two
implementations of this kind of quotient ring/extension in the
:py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension`
classes. Each of those implementations needs some work to make them fully
usable though.
.. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field
.. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number
.. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
.. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis
.. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
.. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem
"""
dtype = ANP
is_AlgebraicField = is_Algebraic = True
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
def __init__(self, dom, *ext, alias=None):
r"""
Parameters
==========
dom : :py:class:`~.Domain`
The base field over which this is an extension field.
Currently only :ref:`QQ` is accepted.
*ext : One or more :py:class:`~.Expr`
Generators of the extension. These should be expressions that are
algebraic over `\mathbb{Q}`.
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
If provided, this will be used as the alias symbol for the
primitive element of the :py:class:`~.AlgebraicField`.
If ``None``, while ``ext`` consists of exactly one
:py:class:`~.AlgebraicNumber`, its alias (if any) will be used.
"""
if not dom.is_QQ:
raise DomainError("ground domain must be a rational field")
from sympy.polys.numberfields import to_number_field
if len(ext) == 1 and isinstance(ext[0], tuple):
orig_ext = ext[0][1:]
else:
orig_ext = ext
if alias is None and len(ext) == 1:
alias = getattr(ext[0], 'alias', None)
self.orig_ext = orig_ext
"""
Original elements given to generate the extension.
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K.orig_ext
(sqrt(2), sqrt(3))
"""
self.ext = to_number_field(ext, alias=alias)
"""
Primitive element used for the extension.
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K.ext
sqrt(2) + sqrt(3)
"""
self.mod = self.ext.minpoly.rep
"""
Minimal polynomial for the primitive element of the extension.
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2))
>>> K.mod
DMP([1, 0, -2], QQ)
"""
self.domain = self.dom = dom
self.ngens = 1
self.symbols = self.gens = (self.ext,)
self.unit = self([dom(1), dom(0)])
self.zero = self.dtype.zero(self.mod.to_list(), dom)
self.one = self.dtype.one(self.mod.to_list(), dom)
self._maximal_order = None
self._discriminant = None
self._nilradicals_mod_p = {}
def new(self, element):
return self.dtype(element, self.mod.to_list(), self.dom)
def __str__(self):
return str(self.dom) + '<' + str(self.ext) + '>'
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.dom, self.ext))
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
if isinstance(other, AlgebraicField):
return self.dtype == other.dtype and self.ext == other.ext
else:
return NotImplemented
def algebraic_field(self, *extension, alias=None):
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias)
def to_alg_num(self, a):
"""Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """
return self.ext.field_element(a)
def to_sympy(self, a):
"""Convert ``a`` of ``dtype`` to a SymPy object. """
# Precompute a converter to be reused:
if not hasattr(self, '_converter'):
self._converter = _make_converter(self)
return self._converter(a)
def from_sympy(self, a):
"""Convert SymPy's expression to ``dtype``. """
try:
return self([self.dom.from_sympy(a)])
except CoercionFailed:
pass
from sympy.polys.numberfields import to_number_field
try:
return self(to_number_field(a, self.ext).native_coeffs())
except (NotAlgebraic, IsomorphismFailed):
raise CoercionFailed(
"%s is not a valid algebraic number in %s" % (a, self))
def from_ZZ(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_QQ(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_RealField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError('there is no ring associated with %s' % self)
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return self.dom.is_positive(a.LC())
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return self.dom.is_negative(a.LC())
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return self.dom.is_nonpositive(a.LC())
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return self.dom.is_nonnegative(a.LC())
def numer(self, a):
"""Returns numerator of ``a``. """
return a
def denom(self, a):
"""Returns denominator of ``a``. """
return self.one
def from_AlgebraicField(K1, a, K0):
"""Convert AlgebraicField element 'a' to another AlgebraicField """
return K1.from_sympy(K0.to_sympy(a))
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a GaussianInteger element 'a' to ``dtype``. """
return K1.from_sympy(K0.to_sympy(a))
def from_GaussianRationalField(K1, a, K0):
"""Convert a GaussianRational element 'a' to ``dtype``. """
return K1.from_sympy(K0.to_sympy(a))
def _do_round_two(self):
from sympy.polys.numberfields.basis import round_two
ZK, dK = round_two(self, radicals=self._nilradicals_mod_p)
self._maximal_order = ZK
self._discriminant = dK
def maximal_order(self):
"""
Compute the maximal order, or ring of integers, of the field.
Returns
=======
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
See Also
========
integral_basis
"""
if self._maximal_order is None:
self._do_round_two()
return self._maximal_order
def integral_basis(self, fmt=None):
r"""
Get an integral basis for the field.
Parameters
==========
fmt : str, None, optional (default=None)
If ``None``, return a list of :py:class:`~.ANP` instances.
If ``"sympy"``, convert each element of the list to an
:py:class:`~.Expr`, using ``self.to_sympy()``.
If ``"alg"``, convert each element of the list to an
:py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``.
Examples
========
>>> from sympy import QQ, AlgebraicNumber, sqrt
>>> alpha = AlgebraicNumber(sqrt(5), alias='alpha')
>>> k = QQ.algebraic_field(alpha)
>>> B0 = k.integral_basis()
>>> B1 = k.integral_basis(fmt='sympy')
>>> B2 = k.integral_basis(fmt='alg')
>>> print(B0[1]) # doctest: +SKIP
ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ)
>>> print(B1[1])
1/2 + alpha/2
>>> print(B2[1])
alpha/2 + 1/2
In the last two cases we get legible expressions, which print somewhat
differently because of the different types involved:
>>> print(type(B1[1]))
<class 'sympy.core.add.Add'>
>>> print(type(B2[1]))
<class 'sympy.core.numbers.AlgebraicNumber'>
See Also
========
to_sympy
to_alg_num
maximal_order
"""
ZK = self.maximal_order()
M = ZK.QQ_matrix
n = M.shape[1]
B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)]
if fmt == 'sympy':
return [self.to_sympy(b) for b in B]
elif fmt == 'alg':
return [self.to_alg_num(b) for b in B]
return B
def discriminant(self):
"""Get the discriminant of the field."""
if self._discriminant is None:
self._do_round_two()
return self._discriminant
def primes_above(self, p):
"""Compute the prime ideals lying above a given rational prime *p*."""
from sympy.polys.numberfields.primes import prime_decomp
ZK = self.maximal_order()
dK = self.discriminant()
rad = self._nilradicals_mod_p.get(p)
return prime_decomp(p, ZK=ZK, dK=dK, radical=rad)
def galois_group(self, by_name=False, max_tries=30, randomize=False):
"""
Compute the Galois group of the Galois closure of this field.
Examples
========
If the field is Galois, the order of the group will equal the degree
of the field:
>>> from sympy import QQ
>>> from sympy.abc import x
>>> k = QQ.alg_field_from_poly(x**4 + 1)
>>> G, _ = k.galois_group()
>>> G.order()
4
If the field is not Galois, then its Galois closure is a proper
extension, and the order of the Galois group will be greater than the
degree of the field:
>>> k = QQ.alg_field_from_poly(x**4 - 2)
>>> G, _ = k.galois_group()
>>> G.order()
8
See Also
========
sympy.polys.numberfields.galoisgroups.galois_group
"""
return self.ext.minpoly_of_element().galois_group(
by_name=by_name, max_tries=max_tries, randomize=randomize)
def _make_converter(K):
"""Construct the converter to convert back to Expr"""
# Precompute the effect of converting to SymPy and expanding expressions
# like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every
# conversion from K to Expr is slow. Here we compute the expansions for
# each power of the generator and collect together the resulting algebraic
# terms and the rational coefficients into a matrix.
gen = K.ext.as_expr()
todom = K.dom.from_sympy
# We'll let Expr compute the expansions. We won't make any presumptions
# about what this results in except that it is QQ-linear in some terms
# that we will call algebraics. The final result will be expressed in
# terms of those.
powers = [S.One, gen]
for n in range(2, K.mod.degree()):
powers.append((gen * powers[-1]).expand())
# Collect the rational coefficients and algebraic Expr that can
# map the ANP coefficients into an expanded SymPy expression
terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers]
algebraics = set().union(*terms)
matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics]
# Create a function to do the conversion efficiently:
def converter(a):
"""Convert a to Expr using converter"""
ai = a.to_list()[::-1]
tosympy = K.dom.to_sympy
coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix]
coeffs_sympy = [tosympy(c) for c in coeffs_dom]
res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics)))
return res
return converter
|