Spaces:
Running
Running
File size: 21,827 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
r"""
Sparse distributed elements of free modules over multivariate (generalized)
polynomial rings.
This code and its data structures are very much like the distributed
polynomials, except that the first "exponent" of the monomial is
a module generator index. That is, the multi-exponent ``(i, e_1, ..., e_n)``
represents the "monomial" `x_1^{e_1} \cdots x_n^{e_n} f_i` of the free module
`F` generated by `f_1, \ldots, f_r` over (a localization of) the ring
`K[x_1, \ldots, x_n]`. A module element is simply stored as a list of terms
ordered by the monomial order. Here a term is a pair of a multi-exponent and a
coefficient. In general, this coefficient should never be zero (since it can
then be omitted). The zero module element is stored as an empty list.
The main routines are ``sdm_nf_mora`` and ``sdm_groebner`` which can be used
to compute, respectively, weak normal forms and standard bases. They work with
arbitrary (not necessarily global) monomial orders.
In general, product orders have to be used to construct valid monomial orders
for modules. However, ``lex`` can be used as-is.
Note that the "level" (number of variables, i.e. parameter u+1 in
distributedpolys.py) is never needed in this code.
The main reference for this file is [SCA],
"A Singular Introduction to Commutative Algebra".
"""
from itertools import permutations
from sympy.polys.monomials import (
monomial_mul, monomial_lcm, monomial_div, monomial_deg
)
from sympy.polys.polytools import Poly
from sympy.polys.polyutils import parallel_dict_from_expr
from sympy.core.singleton import S
from sympy.core.sympify import sympify
# Additional monomial tools.
def sdm_monomial_mul(M, X):
"""
Multiply tuple ``X`` representing a monomial of `K[X]` into the tuple
``M`` representing a monomial of `F`.
Examples
========
Multiplying `xy^3` into `x f_1` yields `x^2 y^3 f_1`:
>>> from sympy.polys.distributedmodules import sdm_monomial_mul
>>> sdm_monomial_mul((1, 1, 0), (1, 3))
(1, 2, 3)
"""
return (M[0],) + monomial_mul(X, M[1:])
def sdm_monomial_deg(M):
"""
Return the total degree of ``M``.
Examples
========
For example, the total degree of `x^2 y f_5` is 3:
>>> from sympy.polys.distributedmodules import sdm_monomial_deg
>>> sdm_monomial_deg((5, 2, 1))
3
"""
return monomial_deg(M[1:])
def sdm_monomial_lcm(A, B):
r"""
Return the "least common multiple" of ``A`` and ``B``.
IF `A = M e_j` and `B = N e_j`, where `M` and `N` are polynomial monomials,
this returns `\lcm(M, N) e_j`. Note that ``A`` and ``B`` involve distinct
monomials.
Otherwise the result is undefined.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_monomial_lcm
>>> sdm_monomial_lcm((1, 2, 3), (1, 0, 5))
(1, 2, 5)
"""
return (A[0],) + monomial_lcm(A[1:], B[1:])
def sdm_monomial_divides(A, B):
"""
Does there exist a (polynomial) monomial X such that XA = B?
Examples
========
Positive examples:
In the following examples, the monomial is given in terms of x, y and the
generator(s), f_1, f_2 etc. The tuple form of that monomial is used in
the call to sdm_monomial_divides.
Note: the generator appears last in the expression but first in the tuple
and other factors appear in the same order that they appear in the monomial
expression.
`A = f_1` divides `B = f_1`
>>> from sympy.polys.distributedmodules import sdm_monomial_divides
>>> sdm_monomial_divides((1, 0, 0), (1, 0, 0))
True
`A = f_1` divides `B = x^2 y f_1`
>>> sdm_monomial_divides((1, 0, 0), (1, 2, 1))
True
`A = xy f_5` divides `B = x^2 y f_5`
>>> sdm_monomial_divides((5, 1, 1), (5, 2, 1))
True
Negative examples:
`A = f_1` does not divide `B = f_2`
>>> sdm_monomial_divides((1, 0, 0), (2, 0, 0))
False
`A = x f_1` does not divide `B = f_1`
>>> sdm_monomial_divides((1, 1, 0), (1, 0, 0))
False
`A = xy^2 f_5` does not divide `B = y f_5`
>>> sdm_monomial_divides((5, 1, 2), (5, 0, 1))
False
"""
return A[0] == B[0] and all(a <= b for a, b in zip(A[1:], B[1:]))
# The actual distributed modules code.
def sdm_LC(f, K):
"""Returns the leading coefficient of ``f``. """
if not f:
return K.zero
else:
return f[0][1]
def sdm_to_dict(f):
"""Make a dictionary from a distributed polynomial. """
return dict(f)
def sdm_from_dict(d, O):
"""
Create an sdm from a dictionary.
Here ``O`` is the monomial order to use.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 1, 0): QQ(1), (1, 0, 0): QQ(2), (0, 1, 0): QQ(0)}
>>> sdm_from_dict(dic, lex)
[((1, 1, 0), 1), ((1, 0, 0), 2)]
"""
return sdm_strip(sdm_sort(list(d.items()), O))
def sdm_sort(f, O):
"""Sort terms in ``f`` using the given monomial order ``O``. """
return sorted(f, key=lambda term: O(term[0]), reverse=True)
def sdm_strip(f):
"""Remove terms with zero coefficients from ``f`` in ``K[X]``. """
return [ (monom, coeff) for monom, coeff in f if coeff ]
def sdm_add(f, g, O, K):
"""
Add two module elements ``f``, ``g``.
Addition is done over the ground field ``K``, monomials are ordered
according to ``O``.
Examples
========
All examples use lexicographic order.
`(xy f_1) + (f_2) = f_2 + xy f_1`
>>> from sympy.polys.distributedmodules import sdm_add
>>> from sympy.polys import lex, QQ
>>> sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ)
[((2, 0, 0), 1), ((1, 1, 1), 1)]
`(xy f_1) + (-xy f_1)` = 0`
>>> sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ)
[]
`(f_1) + (2f_1) = 3f_1`
>>> sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ)
[((1, 0, 0), 3)]
`(yf_1) + (xf_1) = xf_1 + yf_1`
>>> sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ)
[((1, 1, 0), 1), ((1, 0, 1), 1)]
"""
h = dict(f)
for monom, c in g:
if monom in h:
coeff = h[monom] + c
if not coeff:
del h[monom]
else:
h[monom] = coeff
else:
h[monom] = c
return sdm_from_dict(h, O)
def sdm_LM(f):
r"""
Returns the leading monomial of ``f``.
Only valid if `f \ne 0`.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_LM, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
>>> sdm_LM(sdm_from_dict(dic, lex))
(4, 0, 1)
"""
return f[0][0]
def sdm_LT(f):
r"""
Returns the leading term of ``f``.
Only valid if `f \ne 0`.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_LT, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
>>> sdm_LT(sdm_from_dict(dic, lex))
((4, 0, 1), 3)
"""
return f[0]
def sdm_mul_term(f, term, O, K):
"""
Multiply a distributed module element ``f`` by a (polynomial) term ``term``.
Multiplication of coefficients is done over the ground field ``K``, and
monomials are ordered according to ``O``.
Examples
========
`0 f_1 = 0`
>>> from sympy.polys.distributedmodules import sdm_mul_term
>>> from sympy.polys import lex, QQ
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ)
[]
`x 0 = 0`
>>> sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ)
[]
`(x) (f_1) = xf_1`
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ)
[((1, 1, 0), 1)]
`(2xy) (3x f_1 + 4y f_2) = 8xy^2 f_2 + 6x^2y f_1`
>>> f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
>>> sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ)
[((2, 1, 2), 8), ((1, 2, 1), 6)]
"""
X, c = term
if not f or not c:
return []
else:
if K.is_one(c):
return [ (sdm_monomial_mul(f_M, X), f_c) for f_M, f_c in f ]
else:
return [ (sdm_monomial_mul(f_M, X), f_c * c) for f_M, f_c in f ]
def sdm_zero():
"""Return the zero module element."""
return []
def sdm_deg(f):
"""
Degree of ``f``.
This is the maximum of the degrees of all its monomials.
Invalid if ``f`` is zero.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_deg
>>> sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)])
7
"""
return max(sdm_monomial_deg(M[0]) for M in f)
# Conversion
def sdm_from_vector(vec, O, K, **opts):
"""
Create an sdm from an iterable of expressions.
Coefficients are created in the ground field ``K``, and terms are ordered
according to monomial order ``O``. Named arguments are passed on to the
polys conversion code and can be used to specify for example generators.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_from_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ, lex
>>> sdm_from_vector([x**2+y**2, 2*z], lex, QQ)
[((1, 0, 0, 1), 2), ((0, 2, 0, 0), 1), ((0, 0, 2, 0), 1)]
"""
dics, gens = parallel_dict_from_expr(sympify(vec), **opts)
dic = {}
for i, d in enumerate(dics):
for k, v in d.items():
dic[(i,) + k] = K.convert(v)
return sdm_from_dict(dic, O)
def sdm_to_vector(f, gens, K, n=None):
"""
Convert sdm ``f`` into a list of polynomial expressions.
The generators for the polynomial ring are specified via ``gens``. The rank
of the module is guessed, or passed via ``n``. The ground field is assumed
to be ``K``.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_to_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ
>>> f = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
>>> sdm_to_vector(f, [x, y, z], QQ)
[x**2 + y**2, 2*z]
"""
dic = sdm_to_dict(f)
dics = {}
for k, v in dic.items():
dics.setdefault(k[0], []).append((k[1:], v))
n = n or len(dics)
res = []
for k in range(n):
if k in dics:
res.append(Poly(dict(dics[k]), gens=gens, domain=K).as_expr())
else:
res.append(S.Zero)
return res
# Algorithms.
def sdm_spoly(f, g, O, K, phantom=None):
"""
Compute the generalized s-polynomial of ``f`` and ``g``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
This is invalid if either of ``f`` or ``g`` is zero.
If the leading terms of `f` and `g` involve different basis elements of
`F`, their s-poly is defined to be zero. Otherwise it is a certain linear
combination of `f` and `g` in which the leading terms cancel.
See [SCA, defn 2.3.6] for details.
If ``phantom`` is not ``None``, it should be a pair of module elements on
which to perform the same operation(s) as on ``f`` and ``g``. The in this
case both results are returned.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_spoly
>>> from sympy.polys import QQ, lex
>>> f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))]
>>> g = [((2, 3, 0), QQ(1))]
>>> h = [((1, 2, 3), QQ(1))]
>>> sdm_spoly(f, h, lex, QQ)
[]
>>> sdm_spoly(f, g, lex, QQ)
[((1, 2, 1), 1)]
"""
if not f or not g:
return sdm_zero()
LM1 = sdm_LM(f)
LM2 = sdm_LM(g)
if LM1[0] != LM2[0]:
return sdm_zero()
LM1 = LM1[1:]
LM2 = LM2[1:]
lcm = monomial_lcm(LM1, LM2)
m1 = monomial_div(lcm, LM1)
m2 = monomial_div(lcm, LM2)
c = K.quo(-sdm_LC(f, K), sdm_LC(g, K))
r1 = sdm_add(sdm_mul_term(f, (m1, K.one), O, K),
sdm_mul_term(g, (m2, c), O, K), O, K)
if phantom is None:
return r1
r2 = sdm_add(sdm_mul_term(phantom[0], (m1, K.one), O, K),
sdm_mul_term(phantom[1], (m2, c), O, K), O, K)
return r1, r2
def sdm_ecart(f):
"""
Compute the ecart of ``f``.
This is defined to be the difference of the total degree of `f` and the
total degree of the leading monomial of `f` [SCA, defn 2.3.7].
Invalid if f is zero.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_ecart
>>> sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)])
0
>>> sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)])
3
"""
return sdm_deg(f) - sdm_monomial_deg(sdm_LM(f))
def sdm_nf_mora(f, G, O, K, phantom=None):
r"""
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
Weak normal forms are defined in [SCA, defn 2.3.3]. They are not unique.
This function deterministically computes a weak normal form, depending on
the order of `G`.
The most important property of a weak normal form is the following: if
`R` is the ring associated with the monomial ordering (if the ordering is
global, we just have `R = K[x_1, \ldots, x_n]`, otherwise it is a certain
localization thereof), `I` any ideal of `R` and `G` a standard basis for
`I`, then for any `f \in R`, we have `f \in I` if and only if
`NF(f | G) = 0`.
This is the generalized Mora algorithm for computing weak normal forms with
respect to arbitrary monomial orders [SCA, algorithm 2.3.9].
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
on which to perform the same computations as on ``f``, ``G``, both results
are then returned.
"""
from itertools import repeat
h = f
T = list(G)
if phantom is not None:
# "phantom" variables with suffix p
hp = phantom[0]
Tp = list(phantom[1])
phantom = True
else:
Tp = repeat([])
phantom = False
while h:
# TODO better data structure!!!
Th = [(g, sdm_ecart(g), gp) for g, gp in zip(T, Tp)
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h))]
if not Th:
break
g, _, gp = min(Th, key=lambda x: x[1])
if sdm_ecart(g) > sdm_ecart(h):
T.append(h)
if phantom:
Tp.append(hp)
if phantom:
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
else:
h = sdm_spoly(h, g, O, K)
if phantom:
return h, hp
return h
def sdm_nf_buchberger(f, G, O, K, phantom=None):
r"""
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
This is the standard Buchberger algorithm for computing weak normal forms with
respect to *global* monomial orders [SCA, algorithm 1.6.10].
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
on which to perform the same computations as on ``f``, ``G``, both results
are then returned.
"""
from itertools import repeat
h = f
T = list(G)
if phantom is not None:
# "phantom" variables with suffix p
hp = phantom[0]
Tp = list(phantom[1])
phantom = True
else:
Tp = repeat([])
phantom = False
while h:
try:
g, gp = next((g, gp) for g, gp in zip(T, Tp)
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h)))
except StopIteration:
break
if phantom:
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
else:
h = sdm_spoly(h, g, O, K)
if phantom:
return h, hp
return h
def sdm_nf_buchberger_reduced(f, G, O, K):
r"""
Compute a reduced normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
In contrast to weak normal forms, reduced normal forms *are* unique, but
their computation is more expensive.
This is the standard Buchberger algorithm for computing reduced normal forms
with respect to *global* monomial orders [SCA, algorithm 1.6.11].
The ``pantom`` option is not supported, so this normal form cannot be used
as a normal form for the "extended" groebner algorithm.
"""
h = sdm_zero()
g = f
while g:
g = sdm_nf_buchberger(g, G, O, K)
if g:
h = sdm_add(h, [sdm_LT(g)], O, K)
g = g[1:]
return h
def sdm_groebner(G, NF, O, K, extended=False):
"""
Compute a minimal standard basis of ``G`` with respect to order ``O``.
The algorithm uses a normal form ``NF``, for example ``sdm_nf_mora``.
The ground field is assumed to be ``K``, and monomials ordered according
to ``O``.
Let `N` denote the submodule generated by elements of `G`. A standard
basis for `N` is a subset `S` of `N`, such that `in(S) = in(N)`, where for
any subset `X` of `F`, `in(X)` denotes the submodule generated by the
initial forms of elements of `X`. [SCA, defn 2.3.2]
A standard basis is called minimal if no subset of it is a standard basis.
One may show that standard bases are always generating sets.
Minimal standard bases are not unique. This algorithm computes a
deterministic result, depending on the particular order of `G`.
If ``extended=True``, also compute the transition matrix from the initial
generators to the groebner basis. That is, return a list of coefficient
vectors, expressing the elements of the groebner basis in terms of the
elements of ``G``.
This functions implements the "sugar" strategy, see
Giovini et al: "One sugar cube, please" OR Selection strategies in
Buchberger algorithm.
"""
# The critical pair set.
# A critical pair is stored as (i, j, s, t) where (i, j) defines the pair
# (by indexing S), s is the sugar of the pair, and t is the lcm of their
# leading monomials.
P = []
# The eventual standard basis.
S = []
Sugars = []
def Ssugar(i, j):
"""Compute the sugar of the S-poly corresponding to (i, j)."""
LMi = sdm_LM(S[i])
LMj = sdm_LM(S[j])
return max(Sugars[i] - sdm_monomial_deg(LMi),
Sugars[j] - sdm_monomial_deg(LMj)) \
+ sdm_monomial_deg(sdm_monomial_lcm(LMi, LMj))
ourkey = lambda p: (p[2], O(p[3]), p[1])
def update(f, sugar, P):
"""Add f with sugar ``sugar`` to S, update P."""
if not f:
return P
k = len(S)
S.append(f)
Sugars.append(sugar)
LMf = sdm_LM(f)
def removethis(pair):
i, j, s, t = pair
if LMf[0] != t[0]:
return False
tik = sdm_monomial_lcm(LMf, sdm_LM(S[i]))
tjk = sdm_monomial_lcm(LMf, sdm_LM(S[j]))
return tik != t and tjk != t and sdm_monomial_divides(tik, t) and \
sdm_monomial_divides(tjk, t)
# apply the chain criterion
P = [p for p in P if not removethis(p)]
# new-pair set
N = [(i, k, Ssugar(i, k), sdm_monomial_lcm(LMf, sdm_LM(S[i])))
for i in range(k) if LMf[0] == sdm_LM(S[i])[0]]
# TODO apply the product criterion?
N.sort(key=ourkey)
remove = set()
for i, p in enumerate(N):
for j in range(i + 1, len(N)):
if sdm_monomial_divides(p[3], N[j][3]):
remove.add(j)
# TODO mergesort?
P.extend(reversed([p for i, p in enumerate(N) if i not in remove]))
P.sort(key=ourkey, reverse=True)
# NOTE reverse-sort, because we want to pop from the end
return P
# Figure out the number of generators in the ground ring.
try:
# NOTE: we look for the first non-zero vector, take its first monomial
# the number of generators in the ring is one less than the length
# (since the zeroth entry is for the module generators)
numgens = len(next(x[0] for x in G if x)[0]) - 1
except StopIteration:
# No non-zero elements in G ...
if extended:
return [], []
return []
# This list will store expressions of the elements of S in terms of the
# initial generators
coefficients = []
# First add all the elements of G to S
for i, f in enumerate(G):
P = update(f, sdm_deg(f), P)
if extended and f:
coefficients.append(sdm_from_dict({(i,) + (0,)*numgens: K(1)}, O))
# Now carry out the buchberger algorithm.
while P:
i, j, s, t = P.pop()
f, g = S[i], S[j]
if extended:
sp, coeff = sdm_spoly(f, g, O, K,
phantom=(coefficients[i], coefficients[j]))
h, hcoeff = NF(sp, S, O, K, phantom=(coeff, coefficients))
if h:
coefficients.append(hcoeff)
else:
h = NF(sdm_spoly(f, g, O, K), S, O, K)
P = update(h, Ssugar(i, j), P)
# Finally interreduce the standard basis.
# (TODO again, better data structures)
S = {(tuple(f), i) for i, f in enumerate(S)}
for (a, ai), (b, bi) in permutations(S, 2):
A = sdm_LM(a)
B = sdm_LM(b)
if sdm_monomial_divides(A, B) and (b, bi) in S and (a, ai) in S:
S.remove((b, bi))
L = sorted(((list(f), i) for f, i in S), key=lambda p: O(sdm_LM(p[0])),
reverse=True)
res = [x[0] for x in L]
if extended:
return res, [coefficients[i] for _, i in L]
return res
|