File size: 6,455 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from sympy.core.symbol import symbols
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.polys import QQ, ZZ
from sympy.polys.polytools import Poly
from sympy.polys.polyerrors import NotInvertible
from sympy.polys.agca.extensions import FiniteExtension
from sympy.polys.domainmatrix import DomainMatrix

from sympy.testing.pytest import raises

from sympy.abc import x, y, t


def test_FiniteExtension():
    # Gaussian integers
    A = FiniteExtension(Poly(x**2 + 1, x))
    assert A.rank == 2
    assert str(A) == 'ZZ[x]/(x**2 + 1)'
    i = A.generator
    assert i.parent() is A

    assert i*i == A(-1)
    raises(TypeError, lambda: i*())

    assert A.basis == (A.one, i)
    assert A(1) == A.one
    assert i**2 == A(-1)
    assert i**2 != -1  # no coercion
    assert (2 + i)*(1 - i) == 3 - i
    assert (1 + i)**8 == A(16)
    assert A(1).inverse() == A(1)
    raises(NotImplementedError, lambda: A(2).inverse())

    # Finite field of order 27
    F = FiniteExtension(Poly(x**3 - x + 1, x, modulus=3))
    assert F.rank == 3
    a = F.generator  # also generates the cyclic group F - {0}
    assert F.basis == (F(1), a, a**2)
    assert a**27 == a
    assert a**26 == F(1)
    assert a**13 == F(-1)
    assert a**9 == a + 1
    assert a**3 == a - 1
    assert a**6 == a**2 + a + 1
    assert F(x**2 + x).inverse() == 1 - a
    assert F(x + 2)**(-1) == F(x + 2).inverse()
    assert a**19 * a**(-19) == F(1)
    assert (a - 1) / (2*a**2 - 1) == a**2 + 1
    assert (a - 1) // (2*a**2 - 1) == a**2 + 1
    assert 2/(a**2 + 1) == a**2 - a + 1
    assert (a**2 + 1)/2 == -a**2 - 1
    raises(NotInvertible, lambda: F(0).inverse())

    # Function field of an elliptic curve
    K = FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
    assert K.rank == 2
    assert str(K) == 'ZZ(x)[t]/(t**2 - x**3 - x + 1)'
    y = K.generator
    c = 1/(x**3 - x**2 + x - 1)
    assert ((y + x)*(y - x)).inverse() == K(c)
    assert (y + x)*(y - x)*c == K(1)  # explicit inverse of y + x


def test_FiniteExtension_eq_hash():
    # Test eq and hash
    p1 = Poly(x**2 - 2, x, domain=ZZ)
    p2 = Poly(x**2 - 2, x, domain=QQ)
    K1 = FiniteExtension(p1)
    K2 = FiniteExtension(p2)
    assert K1 == FiniteExtension(Poly(x**2 - 2))
    assert K2 != FiniteExtension(Poly(x**2 - 2))
    assert len({K1, K2, FiniteExtension(p1)}) == 2


def test_FiniteExtension_mod():
    # Test mod
    K = FiniteExtension(Poly(x**3 + 1, x, domain=QQ))
    xf = K(x)
    assert (xf**2 - 1) % 1 == K.zero
    assert 1 % (xf**2 - 1) == K.zero
    assert (xf**2 - 1) / (xf - 1) == xf + 1
    assert (xf**2 - 1) // (xf - 1) == xf + 1
    assert (xf**2 - 1) % (xf - 1) == K.zero
    raises(ZeroDivisionError, lambda: (xf**2 - 1) % 0)
    raises(TypeError, lambda: xf % [])
    raises(TypeError, lambda: [] % xf)

    # Test mod over ring
    K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
    xf = K(x)
    assert (xf**2 - 1) % 1 == K.zero
    raises(NotImplementedError, lambda: (xf**2 - 1) % (xf - 1))


def test_FiniteExtension_from_sympy():
    # Test to_sympy/from_sympy
    K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
    xf = K(x)
    assert K.from_sympy(x) == xf
    assert K.to_sympy(xf) == x


def test_FiniteExtension_set_domain():
    KZ = FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))
    KQ = FiniteExtension(Poly(x**2 + 1, x, domain='QQ'))
    assert KZ.set_domain(QQ) == KQ


def test_FiniteExtension_exquo():
    # Test exquo
    K = FiniteExtension(Poly(x**4 + 1))
    xf = K(x)
    assert K.exquo(xf**2 - 1, xf - 1) == xf + 1


def test_FiniteExtension_convert():
    # Test from_MonogenicFiniteExtension
    K1 = FiniteExtension(Poly(x**2 + 1))
    K2 = QQ[x]
    x1, x2 = K1(x), K2(x)
    assert K1.convert(x2) == x1
    assert K2.convert(x1) == x2

    K = FiniteExtension(Poly(x**2 - 1, domain=QQ))
    assert K.convert_from(QQ(1, 2), QQ) == K.one/2


def test_FiniteExtension_division_ring():
    # Test division in FiniteExtension over a ring
    KQ = FiniteExtension(Poly(x**2 - 1, x, domain=QQ))
    KZ = FiniteExtension(Poly(x**2 - 1, x, domain=ZZ))
    KQt = FiniteExtension(Poly(x**2 - 1, x, domain=QQ[t]))
    KQtf = FiniteExtension(Poly(x**2 - 1, x, domain=QQ.frac_field(t)))
    assert KQ.is_Field is True
    assert KZ.is_Field is False
    assert KQt.is_Field is False
    assert KQtf.is_Field is True
    for K in KQ, KZ, KQt, KQtf:
        xK = K.convert(x)
        assert xK / K.one == xK
        assert xK // K.one == xK
        assert xK % K.one == K.zero
        raises(ZeroDivisionError, lambda: xK / K.zero)
        raises(ZeroDivisionError, lambda: xK // K.zero)
        raises(ZeroDivisionError, lambda: xK % K.zero)
        if K.is_Field:
            assert xK / xK == K.one
            assert xK // xK == K.one
            assert xK % xK == K.zero
        else:
            raises(NotImplementedError, lambda: xK / xK)
            raises(NotImplementedError, lambda: xK // xK)
            raises(NotImplementedError, lambda: xK % xK)


def test_FiniteExtension_Poly():
    K = FiniteExtension(Poly(x**2 - 2))
    p = Poly(x, y, domain=K)
    assert p.domain == K
    assert p.as_expr() == x
    assert (p**2).as_expr() == 2

    K = FiniteExtension(Poly(x**2 - 2, x, domain=QQ))
    K2 = FiniteExtension(Poly(t**2 - 2, t, domain=K))
    assert str(K2) == 'QQ[x]/(x**2 - 2)[t]/(t**2 - 2)'

    eK = K2.convert(x + t)
    assert K2.to_sympy(eK) == x + t
    assert K2.to_sympy(eK ** 2) == 4 + 2*x*t
    p = Poly(x + t, y, domain=K2)
    assert p**2 == Poly(4 + 2*x*t, y, domain=K2)


def test_FiniteExtension_sincos_jacobian():
    # Use FiniteExtensino to compute the Jacobian of a matrix involving sin
    # and cos of different symbols.
    r, p, t = symbols('rho, phi, theta')
    elements = [
        [sin(p)*cos(t), r*cos(p)*cos(t), -r*sin(p)*sin(t)],
        [sin(p)*sin(t), r*cos(p)*sin(t),  r*sin(p)*cos(t)],
        [       cos(p),       -r*sin(p),                0],
    ]

    def make_extension(K):
        K = FiniteExtension(Poly(sin(p)**2+cos(p)**2-1, sin(p), domain=K[cos(p)]))
        K = FiniteExtension(Poly(sin(t)**2+cos(t)**2-1, sin(t), domain=K[cos(t)]))
        return K

    Ksc1 = make_extension(ZZ[r])
    Ksc2 = make_extension(ZZ)[r]

    for K in [Ksc1, Ksc2]:
        elements_K = [[K.convert(e) for e in row] for row in elements]
        J = DomainMatrix(elements_K, (3, 3), K)
        det = J.charpoly()[-1] * (-K.one)**3
        assert det == K.convert(r**2*sin(p))