Spaces:
Running
Running
File size: 47,243 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 |
"""
Computations with modules over polynomial rings.
This module implements various classes that encapsulate groebner basis
computations for modules. Most of them should not be instantiated by hand.
Instead, use the constructing routines on objects you already have.
For example, to construct a free module over ``QQ[x, y]``, call
``QQ[x, y].free_module(rank)`` instead of the ``FreeModule`` constructor.
In fact ``FreeModule`` is an abstract base class that should not be
instantiated, the ``free_module`` method instead returns the implementing class
``FreeModulePolyRing``.
In general, the abstract base classes implement most functionality in terms of
a few non-implemented methods. The concrete base classes supply only these
non-implemented methods. They may also supply new implementations of the
convenience methods, for example if there are faster algorithms available.
"""
from copy import copy
from functools import reduce
from sympy.polys.agca.ideals import Ideal
from sympy.polys.domains.field import Field
from sympy.polys.orderings import ProductOrder, monomial_key
from sympy.polys.polyclasses import DMP
from sympy.polys.polyerrors import CoercionFailed
from sympy.core.basic import _aresame
from sympy.utilities.iterables import iterable
# TODO
# - module saturation
# - module quotient/intersection for quotient rings
# - free resoltutions / syzygies
# - finding small/minimal generating sets
# - ...
##########################################################################
## Abstract base classes #################################################
##########################################################################
class Module:
"""
Abstract base class for modules.
Do not instantiate - use ring explicit constructors instead:
>>> from sympy import QQ
>>> from sympy.abc import x
>>> QQ.old_poly_ring(x).free_module(2)
QQ[x]**2
Attributes:
- dtype - type of elements
- ring - containing ring
Non-implemented methods:
- submodule
- quotient_module
- is_zero
- is_submodule
- multiply_ideal
The method convert likely needs to be changed in subclasses.
"""
def __init__(self, ring):
self.ring = ring
def convert(self, elem, M=None):
"""
Convert ``elem`` into internal representation of this module.
If ``M`` is not None, it should be a module containing it.
"""
if not isinstance(elem, self.dtype):
raise CoercionFailed
return elem
def submodule(self, *gens):
"""Generate a submodule."""
raise NotImplementedError
def quotient_module(self, other):
"""Generate a quotient module."""
raise NotImplementedError
def __truediv__(self, e):
if not isinstance(e, Module):
e = self.submodule(*e)
return self.quotient_module(e)
def contains(self, elem):
"""Return True if ``elem`` is an element of this module."""
try:
self.convert(elem)
return True
except CoercionFailed:
return False
def __contains__(self, elem):
return self.contains(elem)
def subset(self, other):
"""
Returns True if ``other`` is is a subset of ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.subset([(1, x), (x, 2)])
True
>>> F.subset([(1/x, x), (x, 2)])
False
"""
return all(self.contains(x) for x in other)
def __eq__(self, other):
return self.is_submodule(other) and other.is_submodule(self)
def __ne__(self, other):
return not (self == other)
def is_zero(self):
"""Returns True if ``self`` is a zero module."""
raise NotImplementedError
def is_submodule(self, other):
"""Returns True if ``other`` is a submodule of ``self``."""
raise NotImplementedError
def multiply_ideal(self, other):
"""
Multiply ``self`` by the ideal ``other``.
"""
raise NotImplementedError
def __mul__(self, e):
if not isinstance(e, Ideal):
try:
e = self.ring.ideal(e)
except (CoercionFailed, NotImplementedError):
return NotImplemented
return self.multiply_ideal(e)
__rmul__ = __mul__
def identity_hom(self):
"""Return the identity homomorphism on ``self``."""
raise NotImplementedError
class ModuleElement:
"""
Base class for module element wrappers.
Use this class to wrap primitive data types as module elements. It stores
a reference to the containing module, and implements all the arithmetic
operators.
Attributes:
- module - containing module
- data - internal data
Methods that likely need change in subclasses:
- add
- mul
- div
- eq
"""
def __init__(self, module, data):
self.module = module
self.data = data
def add(self, d1, d2):
"""Add data ``d1`` and ``d2``."""
return d1 + d2
def mul(self, m, d):
"""Multiply module data ``m`` by coefficient d."""
return m * d
def div(self, m, d):
"""Divide module data ``m`` by coefficient d."""
return m / d
def eq(self, d1, d2):
"""Return true if d1 and d2 represent the same element."""
return d1 == d2
def __add__(self, om):
if not isinstance(om, self.__class__) or om.module != self.module:
try:
om = self.module.convert(om)
except CoercionFailed:
return NotImplemented
return self.__class__(self.module, self.add(self.data, om.data))
__radd__ = __add__
def __neg__(self):
return self.__class__(self.module, self.mul(self.data,
self.module.ring.convert(-1)))
def __sub__(self, om):
if not isinstance(om, self.__class__) or om.module != self.module:
try:
om = self.module.convert(om)
except CoercionFailed:
return NotImplemented
return self.__add__(-om)
def __rsub__(self, om):
return (-self).__add__(om)
def __mul__(self, o):
if not isinstance(o, self.module.ring.dtype):
try:
o = self.module.ring.convert(o)
except CoercionFailed:
return NotImplemented
return self.__class__(self.module, self.mul(self.data, o))
__rmul__ = __mul__
def __truediv__(self, o):
if not isinstance(o, self.module.ring.dtype):
try:
o = self.module.ring.convert(o)
except CoercionFailed:
return NotImplemented
return self.__class__(self.module, self.div(self.data, o))
def __eq__(self, om):
if not isinstance(om, self.__class__) or om.module != self.module:
try:
om = self.module.convert(om)
except CoercionFailed:
return False
return self.eq(self.data, om.data)
def __ne__(self, om):
return not self == om
##########################################################################
## Free Modules ##########################################################
##########################################################################
class FreeModuleElement(ModuleElement):
"""Element of a free module. Data stored as a tuple."""
def add(self, d1, d2):
return tuple(x + y for x, y in zip(d1, d2))
def mul(self, d, p):
return tuple(x * p for x in d)
def div(self, d, p):
return tuple(x / p for x in d)
def __repr__(self):
from sympy.printing.str import sstr
data = self.data
if any(isinstance(x, DMP) for x in data):
data = [self.module.ring.to_sympy(x) for x in data]
return '[' + ', '.join(sstr(x) for x in data) + ']'
def __iter__(self):
return self.data.__iter__()
def __getitem__(self, idx):
return self.data[idx]
class FreeModule(Module):
"""
Abstract base class for free modules.
Additional attributes:
- rank - rank of the free module
Non-implemented methods:
- submodule
"""
dtype = FreeModuleElement
def __init__(self, ring, rank):
Module.__init__(self, ring)
self.rank = rank
def __repr__(self):
return repr(self.ring) + "**" + repr(self.rank)
def is_submodule(self, other):
"""
Returns True if ``other`` is a submodule of ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> M = F.submodule([2, x])
>>> F.is_submodule(F)
True
>>> F.is_submodule(M)
True
>>> M.is_submodule(F)
False
"""
if isinstance(other, SubModule):
return other.container == self
if isinstance(other, FreeModule):
return other.ring == self.ring and other.rank == self.rank
return False
def convert(self, elem, M=None):
"""
Convert ``elem`` into the internal representation.
This method is called implicitly whenever computations involve elements
not in the internal representation.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.convert([1, 0])
[1, 0]
"""
if isinstance(elem, FreeModuleElement):
if elem.module is self:
return elem
if elem.module.rank != self.rank:
raise CoercionFailed
return FreeModuleElement(self,
tuple(self.ring.convert(x, elem.module.ring) for x in elem.data))
elif iterable(elem):
tpl = tuple(self.ring.convert(x) for x in elem)
if len(tpl) != self.rank:
raise CoercionFailed
return FreeModuleElement(self, tpl)
elif _aresame(elem, 0):
return FreeModuleElement(self, (self.ring.convert(0),)*self.rank)
else:
raise CoercionFailed
def is_zero(self):
"""
Returns True if ``self`` is a zero module.
(If, as this implementation assumes, the coefficient ring is not the
zero ring, then this is equivalent to the rank being zero.)
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(0).is_zero()
True
>>> QQ.old_poly_ring(x).free_module(1).is_zero()
False
"""
return self.rank == 0
def basis(self):
"""
Return a set of basis elements.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(3).basis()
([1, 0, 0], [0, 1, 0], [0, 0, 1])
"""
from sympy.matrices import eye
M = eye(self.rank)
return tuple(self.convert(M.row(i)) for i in range(self.rank))
def quotient_module(self, submodule):
"""
Return a quotient module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2)
>>> M.quotient_module(M.submodule([1, x], [x, 2]))
QQ[x]**2/<[1, x], [x, 2]>
Or more conicisely, using the overloaded division operator:
>>> QQ.old_poly_ring(x).free_module(2) / [[1, x], [x, 2]]
QQ[x]**2/<[1, x], [x, 2]>
"""
return QuotientModule(self.ring, self, submodule)
def multiply_ideal(self, other):
"""
Multiply ``self`` by the ideal ``other``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x)
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.multiply_ideal(I)
<[x, 0], [0, x]>
"""
return self.submodule(*self.basis()).multiply_ideal(other)
def identity_hom(self):
"""
Return the identity homomorphism on ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).identity_hom()
Matrix([
[1, 0], : QQ[x]**2 -> QQ[x]**2
[0, 1]])
"""
from sympy.polys.agca.homomorphisms import homomorphism
return homomorphism(self, self, self.basis())
class FreeModulePolyRing(FreeModule):
"""
Free module over a generalized polynomial ring.
Do not instantiate this, use the constructor method of the ring instead:
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(3)
>>> F
QQ[x]**3
>>> F.contains([x, 1, 0])
True
>>> F.contains([1/x, 0, 1])
False
"""
def __init__(self, ring, rank):
from sympy.polys.domains.old_polynomialring import PolynomialRingBase
FreeModule.__init__(self, ring, rank)
if not isinstance(ring, PolynomialRingBase):
raise NotImplementedError('This implementation only works over '
+ 'polynomial rings, got %s' % ring)
if not isinstance(ring.dom, Field):
raise NotImplementedError('Ground domain must be a field, '
+ 'got %s' % ring.dom)
def submodule(self, *gens, **opts):
"""
Generate a submodule.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, x + y])
>>> M
<[x, x + y]>
>>> M.contains([2*x, 2*x + 2*y])
True
>>> M.contains([x, y])
False
"""
return SubModulePolyRing(gens, self, **opts)
class FreeModuleQuotientRing(FreeModule):
"""
Free module over a quotient ring.
Do not instantiate this, use the constructor method of the ring instead:
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(3)
>>> F
(QQ[x]/<x**2 + 1>)**3
Attributes
- quot - the quotient module `R^n / IR^n`, where `R/I` is our ring
"""
def __init__(self, ring, rank):
from sympy.polys.domains.quotientring import QuotientRing
FreeModule.__init__(self, ring, rank)
if not isinstance(ring, QuotientRing):
raise NotImplementedError('This implementation only works over '
+ 'quotient rings, got %s' % ring)
F = self.ring.ring.free_module(self.rank)
self.quot = F / (self.ring.base_ideal*F)
def __repr__(self):
return "(" + repr(self.ring) + ")" + "**" + repr(self.rank)
def submodule(self, *gens, **opts):
"""
Generate a submodule.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y])
>>> M
<[x + <x**2 - y**2>, x + y + <x**2 - y**2>]>
>>> M.contains([y**2, x**2 + x*y])
True
>>> M.contains([x, y])
False
"""
return SubModuleQuotientRing(gens, self, **opts)
def lift(self, elem):
"""
Lift the element ``elem`` of self to the module self.quot.
Note that self.quot is the same set as self, just as an R-module
and not as an R/I-module, so this makes sense.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
>>> e = F.convert([1, 0])
>>> e
[1 + <x**2 + 1>, 0 + <x**2 + 1>]
>>> L = F.quot
>>> l = F.lift(e)
>>> l
[1, 0] + <[x**2 + 1, 0], [0, x**2 + 1]>
>>> L.contains(l)
True
"""
return self.quot.convert([x.data for x in elem])
def unlift(self, elem):
"""
Push down an element of self.quot to self.
This undoes ``lift``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
>>> e = F.convert([1, 0])
>>> l = F.lift(e)
>>> e == l
False
>>> e == F.unlift(l)
True
"""
return self.convert(elem.data)
##########################################################################
## Submodules and subquotients ###########################################
##########################################################################
class SubModule(Module):
"""
Base class for submodules.
Attributes:
- container - containing module
- gens - generators (subset of containing module)
- rank - rank of containing module
Non-implemented methods:
- _contains
- _syzygies
- _in_terms_of_generators
- _intersect
- _module_quotient
Methods that likely need change in subclasses:
- reduce_element
"""
def __init__(self, gens, container):
Module.__init__(self, container.ring)
self.gens = tuple(container.convert(x) for x in gens)
self.container = container
self.rank = container.rank
self.ring = container.ring
self.dtype = container.dtype
def __repr__(self):
return "<" + ", ".join(repr(x) for x in self.gens) + ">"
def _contains(self, other):
"""Implementation of containment.
Other is guaranteed to be FreeModuleElement."""
raise NotImplementedError
def _syzygies(self):
"""Implementation of syzygy computation wrt self generators."""
raise NotImplementedError
def _in_terms_of_generators(self, e):
"""Implementation of expression in terms of generators."""
raise NotImplementedError
def convert(self, elem, M=None):
"""
Convert ``elem`` into the internal represantition.
Mostly called implicitly.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, x])
>>> M.convert([2, 2*x])
[2, 2*x]
"""
if isinstance(elem, self.container.dtype) and elem.module is self:
return elem
r = copy(self.container.convert(elem, M))
r.module = self
if not self._contains(r):
raise CoercionFailed
return r
def _intersect(self, other):
"""Implementation of intersection.
Other is guaranteed to be a submodule of same free module."""
raise NotImplementedError
def _module_quotient(self, other):
"""Implementation of quotient.
Other is guaranteed to be a submodule of same free module."""
raise NotImplementedError
def intersect(self, other, **options):
"""
Returns the intersection of ``self`` with submodule ``other``.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x, y).free_module(2)
>>> F.submodule([x, x]).intersect(F.submodule([y, y]))
<[x*y, x*y]>
Some implementation allow further options to be passed. Currently, to
only one implemented is ``relations=True``, in which case the function
will return a triple ``(res, rela, relb)``, where ``res`` is the
intersection module, and ``rela`` and ``relb`` are lists of coefficient
vectors, expressing the generators of ``res`` in terms of the
generators of ``self`` (``rela``) and ``other`` (``relb``).
>>> F.submodule([x, x]).intersect(F.submodule([y, y]), relations=True)
(<[x*y, x*y]>, [(DMP_Python([[1, 0]], QQ),)], [(DMP_Python([[1], []], QQ),)])
The above result says: the intersection module is generated by the
single element `(-xy, -xy) = -y (x, x) = -x (y, y)`, where
`(x, x)` and `(y, y)` respectively are the unique generators of
the two modules being intersected.
"""
if not isinstance(other, SubModule):
raise TypeError('%s is not a SubModule' % other)
if other.container != self.container:
raise ValueError(
'%s is contained in a different free module' % other)
return self._intersect(other, **options)
def module_quotient(self, other, **options):
r"""
Returns the module quotient of ``self`` by submodule ``other``.
That is, if ``self`` is the module `M` and ``other`` is `N`, then
return the ideal `\{f \in R | fN \subset M\}`.
Examples
========
>>> from sympy import QQ
>>> from sympy.abc import x, y
>>> F = QQ.old_poly_ring(x, y).free_module(2)
>>> S = F.submodule([x*y, x*y])
>>> T = F.submodule([x, x])
>>> S.module_quotient(T)
<y>
Some implementations allow further options to be passed. Currently, the
only one implemented is ``relations=True``, which may only be passed
if ``other`` is principal. In this case the function
will return a pair ``(res, rel)`` where ``res`` is the ideal, and
``rel`` is a list of coefficient vectors, expressing the generators of
the ideal, multiplied by the generator of ``other`` in terms of
generators of ``self``.
>>> S.module_quotient(T, relations=True)
(<y>, [[DMP_Python([[1]], QQ)]])
This means that the quotient ideal is generated by the single element
`y`, and that `y (x, x) = 1 (xy, xy)`, `(x, x)` and `(xy, xy)` being
the generators of `T` and `S`, respectively.
"""
if not isinstance(other, SubModule):
raise TypeError('%s is not a SubModule' % other)
if other.container != self.container:
raise ValueError(
'%s is contained in a different free module' % other)
return self._module_quotient(other, **options)
def union(self, other):
"""
Returns the module generated by the union of ``self`` and ``other``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(1)
>>> M = F.submodule([x**2 + x]) # <x(x+1)>
>>> N = F.submodule([x**2 - 1]) # <(x-1)(x+1)>
>>> M.union(N) == F.submodule([x+1])
True
"""
if not isinstance(other, SubModule):
raise TypeError('%s is not a SubModule' % other)
if other.container != self.container:
raise ValueError(
'%s is contained in a different free module' % other)
return self.__class__(self.gens + other.gens, self.container)
def is_zero(self):
"""
Return True if ``self`` is a zero module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_zero()
False
>>> F.submodule([0, 0]).is_zero()
True
"""
return all(x == 0 for x in self.gens)
def submodule(self, *gens):
"""
Generate a submodule.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2).submodule([x, 1])
>>> M.submodule([x**2, x])
<[x**2, x]>
"""
if not self.subset(gens):
raise ValueError('%s not a subset of %s' % (gens, self))
return self.__class__(gens, self.container)
def is_full_module(self):
"""
Return True if ``self`` is the entire free module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_full_module()
False
>>> F.submodule([1, 1], [1, 2]).is_full_module()
True
"""
return all(self.contains(x) for x in self.container.basis())
def is_submodule(self, other):
"""
Returns True if ``other`` is a submodule of ``self``.
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> M = F.submodule([2, x])
>>> N = M.submodule([2*x, x**2])
>>> M.is_submodule(M)
True
>>> M.is_submodule(N)
True
>>> N.is_submodule(M)
False
"""
if isinstance(other, SubModule):
return self.container == other.container and \
all(self.contains(x) for x in other.gens)
if isinstance(other, (FreeModule, QuotientModule)):
return self.container == other and self.is_full_module()
return False
def syzygy_module(self, **opts):
r"""
Compute the syzygy module of the generators of ``self``.
Suppose `M` is generated by `f_1, \ldots, f_n` over the ring
`R`. Consider the homomorphism `\phi: R^n \to M`, given by
sending `(r_1, \ldots, r_n) \to r_1 f_1 + \cdots + r_n f_n`.
The syzygy module is defined to be the kernel of `\phi`.
Examples
========
The syzygy module is zero iff the generators generate freely a free
submodule:
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).submodule([1, 0], [1, 1]).syzygy_module().is_zero()
True
A slightly more interesting example:
>>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, 2*x], [y, 2*y])
>>> S = QQ.old_poly_ring(x, y).free_module(2).submodule([y, -x])
>>> M.syzygy_module() == S
True
"""
F = self.ring.free_module(len(self.gens))
# NOTE we filter out zero syzygies. This is for convenience of the
# _syzygies function and not meant to replace any real "generating set
# reduction" algorithm
return F.submodule(*[x for x in self._syzygies() if F.convert(x) != 0],
**opts)
def in_terms_of_generators(self, e):
"""
Express element ``e`` of ``self`` in terms of the generators.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> M = F.submodule([1, 0], [1, 1])
>>> M.in_terms_of_generators([x, x**2]) # doctest: +SKIP
[DMP_Python([-1, 1, 0], QQ), DMP_Python([1, 0, 0], QQ)]
"""
try:
e = self.convert(e)
except CoercionFailed:
raise ValueError('%s is not an element of %s' % (e, self))
return self._in_terms_of_generators(e)
def reduce_element(self, x):
"""
Reduce the element ``x`` of our ring modulo the ideal ``self``.
Here "reduce" has no specific meaning, it could return a unique normal
form, simplify the expression a bit, or just do nothing.
"""
return x
def quotient_module(self, other, **opts):
"""
Return a quotient module.
This is the same as taking a submodule of a quotient of the containing
module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> S1 = F.submodule([x, 1])
>>> S2 = F.submodule([x**2, x])
>>> S1.quotient_module(S2)
<[x, 1] + <[x**2, x]>>
Or more coincisely, using the overloaded division operator:
>>> F.submodule([x, 1]) / [(x**2, x)]
<[x, 1] + <[x**2, x]>>
"""
if not self.is_submodule(other):
raise ValueError('%s not a submodule of %s' % (other, self))
return SubQuotientModule(self.gens,
self.container.quotient_module(other), **opts)
def __add__(self, oth):
return self.container.quotient_module(self).convert(oth)
__radd__ = __add__
def multiply_ideal(self, I):
"""
Multiply ``self`` by the ideal ``I``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x**2)
>>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, 1])
>>> I*M
<[x**2, x**2]>
"""
return self.submodule(*[x*g for [x] in I._module.gens for g in self.gens])
def inclusion_hom(self):
"""
Return a homomorphism representing the inclusion map of ``self``.
That is, the natural map from ``self`` to ``self.container``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).inclusion_hom()
Matrix([
[1, 0], : <[x, x]> -> QQ[x]**2
[0, 1]])
"""
return self.container.identity_hom().restrict_domain(self)
def identity_hom(self):
"""
Return the identity homomorphism on ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).identity_hom()
Matrix([
[1, 0], : <[x, x]> -> <[x, x]>
[0, 1]])
"""
return self.container.identity_hom().restrict_domain(
self).restrict_codomain(self)
class SubQuotientModule(SubModule):
"""
Submodule of a quotient module.
Equivalently, quotient module of a submodule.
Do not instantiate this, instead use the submodule or quotient_module
constructing methods:
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> S = F.submodule([1, 0], [1, x])
>>> Q = F/[(1, 0)]
>>> S/[(1, 0)] == Q.submodule([5, x])
True
Attributes:
- base - base module we are quotient of
- killed_module - submodule used to form the quotient
"""
def __init__(self, gens, container, **opts):
SubModule.__init__(self, gens, container)
self.killed_module = self.container.killed_module
# XXX it is important for some code below that the generators of base
# are in this particular order!
self.base = self.container.base.submodule(
*[x.data for x in self.gens], **opts).union(self.killed_module)
def _contains(self, elem):
return self.base.contains(elem.data)
def _syzygies(self):
# let N = self.killed_module be generated by e_1, ..., e_r
# let F = self.base be generated by f_1, ..., f_s and e_1, ..., e_r
# Then self = F/N.
# Let phi: R**s --> self be the evident surjection.
# Similarly psi: R**(s + r) --> F.
# We need to find generators for ker(phi). Let chi: R**s --> F be the
# evident lift of phi. For X in R**s, phi(X) = 0 iff chi(X) is
# contained in N, iff there exists Y in R**r such that
# psi(X, Y) = 0.
# Hence if alpha: R**(s + r) --> R**s is the projection map, then
# ker(phi) = alpha ker(psi).
return [X[:len(self.gens)] for X in self.base._syzygies()]
def _in_terms_of_generators(self, e):
return self.base._in_terms_of_generators(e.data)[:len(self.gens)]
def is_full_module(self):
"""
Return True if ``self`` is the entire free module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_full_module()
False
>>> F.submodule([1, 1], [1, 2]).is_full_module()
True
"""
return self.base.is_full_module()
def quotient_hom(self):
"""
Return the quotient homomorphism to self.
That is, return the natural map from ``self.base`` to ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = (QQ.old_poly_ring(x).free_module(2) / [(1, x)]).submodule([1, 0])
>>> M.quotient_hom()
Matrix([
[1, 0], : <[1, 0], [1, x]> -> <[1, 0] + <[1, x]>, [1, x] + <[1, x]>>
[0, 1]])
"""
return self.base.identity_hom().quotient_codomain(self.killed_module)
_subs0 = lambda x: x[0]
_subs1 = lambda x: x[1:]
class ModuleOrder(ProductOrder):
"""A product monomial order with a zeroth term as module index."""
def __init__(self, o1, o2, TOP):
if TOP:
ProductOrder.__init__(self, (o2, _subs1), (o1, _subs0))
else:
ProductOrder.__init__(self, (o1, _subs0), (o2, _subs1))
class SubModulePolyRing(SubModule):
"""
Submodule of a free module over a generalized polynomial ring.
Do not instantiate this, use the constructor method of FreeModule instead:
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x, y).free_module(2)
>>> F.submodule([x, y], [1, 0])
<[x, y], [1, 0]>
Attributes:
- order - monomial order used
"""
#self._gb - cached groebner basis
#self._gbe - cached groebner basis relations
def __init__(self, gens, container, order="lex", TOP=True):
SubModule.__init__(self, gens, container)
if not isinstance(container, FreeModulePolyRing):
raise NotImplementedError('This implementation is for submodules of '
+ 'FreeModulePolyRing, got %s' % container)
self.order = ModuleOrder(monomial_key(order), self.ring.order, TOP)
self._gb = None
self._gbe = None
def __eq__(self, other):
if isinstance(other, SubModulePolyRing) and self.order != other.order:
return False
return SubModule.__eq__(self, other)
def _groebner(self, extended=False):
"""Returns a standard basis in sdm form."""
from sympy.polys.distributedmodules import sdm_groebner, sdm_nf_mora
if self._gbe is None and extended:
gb, gbe = sdm_groebner(
[self.ring._vector_to_sdm(x, self.order) for x in self.gens],
sdm_nf_mora, self.order, self.ring.dom, extended=True)
self._gb, self._gbe = tuple(gb), tuple(gbe)
if self._gb is None:
self._gb = tuple(sdm_groebner(
[self.ring._vector_to_sdm(x, self.order) for x in self.gens],
sdm_nf_mora, self.order, self.ring.dom))
if extended:
return self._gb, self._gbe
else:
return self._gb
def _groebner_vec(self, extended=False):
"""Returns a standard basis in element form."""
if not extended:
return [FreeModuleElement(self,
tuple(self.ring._sdm_to_vector(x, self.rank)))
for x in self._groebner()]
gb, gbe = self._groebner(extended=True)
return ([self.convert(self.ring._sdm_to_vector(x, self.rank))
for x in gb],
[self.ring._sdm_to_vector(x, len(self.gens)) for x in gbe])
def _contains(self, x):
from sympy.polys.distributedmodules import sdm_zero, sdm_nf_mora
return sdm_nf_mora(self.ring._vector_to_sdm(x, self.order),
self._groebner(), self.order, self.ring.dom) == \
sdm_zero()
def _syzygies(self):
"""Compute syzygies. See [SCA, algorithm 2.5.4]."""
# NOTE if self.gens is a standard basis, this can be done more
# efficiently using Schreyer's theorem
# First bullet point
k = len(self.gens)
r = self.rank
zero = self.ring.convert(0)
one = self.ring.convert(1)
Rkr = self.ring.free_module(r + k)
newgens = []
for j, f in enumerate(self.gens):
m = [0]*(r + k)
for i, v in enumerate(f):
m[i] = f[i]
for i in range(k):
m[r + i] = one if j == i else zero
m = FreeModuleElement(Rkr, tuple(m))
newgens.append(m)
# Note: we need *descending* order on module index, and TOP=False to
# get an elimination order
F = Rkr.submodule(*newgens, order='ilex', TOP=False)
# Second bullet point: standard basis of F
G = F._groebner_vec()
# Third bullet point: G0 = G intersect the new k components
G0 = [x[r:] for x in G if all(y == zero for y in x[:r])]
# Fourth and fifth bullet points: we are done
return G0
def _in_terms_of_generators(self, e):
"""Expression in terms of generators. See [SCA, 2.8.1]."""
# NOTE: if gens is a standard basis, this can be done more efficiently
M = self.ring.free_module(self.rank).submodule(*((e,) + self.gens))
S = M.syzygy_module(
order="ilex", TOP=False) # We want decreasing order!
G = S._groebner_vec()
# This list cannot not be empty since e is an element
e = [x for x in G if self.ring.is_unit(x[0])][0]
return [-x/e[0] for x in e[1:]]
def reduce_element(self, x, NF=None):
"""
Reduce the element ``x`` of our container modulo ``self``.
This applies the normal form ``NF`` to ``x``. If ``NF`` is passed
as none, the default Mora normal form is used (which is not unique!).
"""
from sympy.polys.distributedmodules import sdm_nf_mora
if NF is None:
NF = sdm_nf_mora
return self.container.convert(self.ring._sdm_to_vector(NF(
self.ring._vector_to_sdm(x, self.order), self._groebner(),
self.order, self.ring.dom),
self.rank))
def _intersect(self, other, relations=False):
# See: [SCA, section 2.8.2]
fi = self.gens
hi = other.gens
r = self.rank
ci = [[0]*(2*r) for _ in range(r)]
for k in range(r):
ci[k][k] = 1
ci[k][r + k] = 1
di = [list(f) + [0]*r for f in fi]
ei = [[0]*r + list(h) for h in hi]
syz = self.ring.free_module(2*r).submodule(*(ci + di + ei))._syzygies()
nonzero = [x for x in syz if any(y != self.ring.zero for y in x[:r])]
res = self.container.submodule(*([-y for y in x[:r]] for x in nonzero))
reln1 = [x[r:r + len(fi)] for x in nonzero]
reln2 = [x[r + len(fi):] for x in nonzero]
if relations:
return res, reln1, reln2
return res
def _module_quotient(self, other, relations=False):
# See: [SCA, section 2.8.4]
if relations and len(other.gens) != 1:
raise NotImplementedError
if len(other.gens) == 0:
return self.ring.ideal(1)
elif len(other.gens) == 1:
# We do some trickery. Let f be the (vector!) generating ``other``
# and f1, .., fn be the (vectors) generating self.
# Consider the submodule of R^{r+1} generated by (f, 1) and
# {(fi, 0) | i}. Then the intersection with the last module
# component yields the quotient.
g1 = list(other.gens[0]) + [1]
gi = [list(x) + [0] for x in self.gens]
# NOTE: We *need* to use an elimination order
M = self.ring.free_module(self.rank + 1).submodule(*([g1] + gi),
order='ilex', TOP=False)
if not relations:
return self.ring.ideal(*[x[-1] for x in M._groebner_vec() if
all(y == self.ring.zero for y in x[:-1])])
else:
G, R = M._groebner_vec(extended=True)
indices = [i for i, x in enumerate(G) if
all(y == self.ring.zero for y in x[:-1])]
return (self.ring.ideal(*[G[i][-1] for i in indices]),
[[-x for x in R[i][1:]] for i in indices])
# For more generators, we use I : <h1, .., hn> = intersection of
# {I : <hi> | i}
# TODO this can be done more efficiently
return reduce(lambda x, y: x.intersect(y),
(self._module_quotient(self.container.submodule(x)) for x in other.gens))
class SubModuleQuotientRing(SubModule):
"""
Class for submodules of free modules over quotient rings.
Do not instantiate this. Instead use the submodule methods.
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y])
>>> M
<[x + <x**2 - y**2>, x + y + <x**2 - y**2>]>
>>> M.contains([y**2, x**2 + x*y])
True
>>> M.contains([x, y])
False
Attributes:
- quot - the subquotient of `R^n/IR^n` generated by lifts of our generators
"""
def __init__(self, gens, container):
SubModule.__init__(self, gens, container)
self.quot = self.container.quot.submodule(
*[self.container.lift(x) for x in self.gens])
def _contains(self, elem):
return self.quot._contains(self.container.lift(elem))
def _syzygies(self):
return [tuple(self.ring.convert(y, self.quot.ring) for y in x)
for x in self.quot._syzygies()]
def _in_terms_of_generators(self, elem):
return [self.ring.convert(x, self.quot.ring) for x in
self.quot._in_terms_of_generators(self.container.lift(elem))]
##########################################################################
## Quotient Modules ######################################################
##########################################################################
class QuotientModuleElement(ModuleElement):
"""Element of a quotient module."""
def eq(self, d1, d2):
"""Equality comparison."""
return self.module.killed_module.contains(d1 - d2)
def __repr__(self):
return repr(self.data) + " + " + repr(self.module.killed_module)
class QuotientModule(Module):
"""
Class for quotient modules.
Do not instantiate this directly. For subquotients, see the
SubQuotientModule class.
Attributes:
- base - the base module we are a quotient of
- killed_module - the submodule used to form the quotient
- rank of the base
"""
dtype = QuotientModuleElement
def __init__(self, ring, base, submodule):
Module.__init__(self, ring)
if not base.is_submodule(submodule):
raise ValueError('%s is not a submodule of %s' % (submodule, base))
self.base = base
self.killed_module = submodule
self.rank = base.rank
def __repr__(self):
return repr(self.base) + "/" + repr(self.killed_module)
def is_zero(self):
"""
Return True if ``self`` is a zero module.
This happens if and only if the base module is the same as the
submodule being killed.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> (F/[(1, 0)]).is_zero()
False
>>> (F/[(1, 0), (0, 1)]).is_zero()
True
"""
return self.base == self.killed_module
def is_submodule(self, other):
"""
Return True if ``other`` is a submodule of ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
>>> S = Q.submodule([1, 0])
>>> Q.is_submodule(S)
True
>>> S.is_submodule(Q)
False
"""
if isinstance(other, QuotientModule):
return self.killed_module == other.killed_module and \
self.base.is_submodule(other.base)
if isinstance(other, SubQuotientModule):
return other.container == self
return False
def submodule(self, *gens, **opts):
"""
Generate a submodule.
This is the same as taking a quotient of a submodule of the base
module.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
>>> Q.submodule([x, 0])
<[x, 0] + <[x, x]>>
"""
return SubQuotientModule(gens, self, **opts)
def convert(self, elem, M=None):
"""
Convert ``elem`` into the internal representation.
This method is called implicitly whenever computations involve elements
not in the internal representation.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> F.convert([1, 0])
[1, 0] + <[1, 2], [1, x]>
"""
if isinstance(elem, QuotientModuleElement):
if elem.module is self:
return elem
if self.killed_module.is_submodule(elem.module.killed_module):
return QuotientModuleElement(self, self.base.convert(elem.data))
raise CoercionFailed
return QuotientModuleElement(self, self.base.convert(elem))
def identity_hom(self):
"""
Return the identity homomorphism on ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> M.identity_hom()
Matrix([
[1, 0], : QQ[x]**2/<[1, 2], [1, x]> -> QQ[x]**2/<[1, 2], [1, x]>
[0, 1]])
"""
return self.base.identity_hom().quotient_codomain(
self.killed_module).quotient_domain(self.killed_module)
def quotient_hom(self):
"""
Return the quotient homomorphism to ``self``.
That is, return a homomorphism representing the natural map from
``self.base`` to ``self``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> M.quotient_hom()
Matrix([
[1, 0], : QQ[x]**2 -> QQ[x]**2/<[1, 2], [1, x]>
[0, 1]])
"""
return self.base.identity_hom().quotient_codomain(
self.killed_module)
|