Spaces:
Running
Running
File size: 9,388 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
"""Finite extensions of ring domains."""
from sympy.polys.domains.domain import Domain
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.polyerrors import (CoercionFailed, NotInvertible,
GeneratorsError)
from sympy.polys.polytools import Poly
from sympy.printing.defaults import DefaultPrinting
class ExtensionElement(DomainElement, DefaultPrinting):
"""
Element of a finite extension.
A class of univariate polynomials modulo the ``modulus``
of the extension ``ext``. It is represented by the
unique polynomial ``rep`` of lowest degree. Both
``rep`` and the representation ``mod`` of ``modulus``
are of class DMP.
"""
__slots__ = ('rep', 'ext')
def __init__(self, rep, ext):
self.rep = rep
self.ext = ext
def parent(f):
return f.ext
def as_expr(f):
return f.ext.to_sympy(f)
def __bool__(f):
return bool(f.rep)
def __pos__(f):
return f
def __neg__(f):
return ExtElem(-f.rep, f.ext)
def _get_rep(f, g):
if isinstance(g, ExtElem):
if g.ext == f.ext:
return g.rep
else:
return None
else:
try:
g = f.ext.convert(g)
return g.rep
except CoercionFailed:
return None
def __add__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(f.rep + rep, f.ext)
else:
return NotImplemented
__radd__ = __add__
def __sub__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(f.rep - rep, f.ext)
else:
return NotImplemented
def __rsub__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(rep - f.rep, f.ext)
else:
return NotImplemented
def __mul__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem((f.rep * rep) % f.ext.mod, f.ext)
else:
return NotImplemented
__rmul__ = __mul__
def _divcheck(f):
"""Raise if division is not implemented for this divisor"""
if not f:
raise NotInvertible('Zero divisor')
elif f.ext.is_Field:
return True
elif f.rep.is_ground and f.ext.domain.is_unit(f.rep.LC()):
return True
else:
# Some cases like (2*x + 2)/2 over ZZ will fail here. It is
# unclear how to implement division in general if the ground
# domain is not a field so for now it was decided to restrict the
# implementation to division by invertible constants.
msg = (f"Can not invert {f} in {f.ext}. "
"Only division by invertible constants is implemented.")
raise NotImplementedError(msg)
def inverse(f):
"""Multiplicative inverse.
Raises
======
NotInvertible
If the element is a zero divisor.
"""
f._divcheck()
if f.ext.is_Field:
invrep = f.rep.invert(f.ext.mod)
else:
R = f.ext.ring
invrep = R.exquo(R.one, f.rep)
return ExtElem(invrep, f.ext)
def __truediv__(f, g):
rep = f._get_rep(g)
if rep is None:
return NotImplemented
g = ExtElem(rep, f.ext)
try:
ginv = g.inverse()
except NotInvertible:
raise ZeroDivisionError(f"{f} / {g}")
return f * ginv
__floordiv__ = __truediv__
def __rtruediv__(f, g):
try:
g = f.ext.convert(g)
except CoercionFailed:
return NotImplemented
return g / f
__rfloordiv__ = __rtruediv__
def __mod__(f, g):
rep = f._get_rep(g)
if rep is None:
return NotImplemented
g = ExtElem(rep, f.ext)
try:
g._divcheck()
except NotInvertible:
raise ZeroDivisionError(f"{f} % {g}")
# Division where defined is always exact so there is no remainder
return f.ext.zero
def __rmod__(f, g):
try:
g = f.ext.convert(g)
except CoercionFailed:
return NotImplemented
return g % f
def __pow__(f, n):
if not isinstance(n, int):
raise TypeError("exponent of type 'int' expected")
if n < 0:
try:
f, n = f.inverse(), -n
except NotImplementedError:
raise ValueError("negative powers are not defined")
b = f.rep
m = f.ext.mod
r = f.ext.one.rep
while n > 0:
if n % 2:
r = (r*b) % m
b = (b*b) % m
n //= 2
return ExtElem(r, f.ext)
def __eq__(f, g):
if isinstance(g, ExtElem):
return f.rep == g.rep and f.ext == g.ext
else:
return NotImplemented
def __ne__(f, g):
return not f == g
def __hash__(f):
return hash((f.rep, f.ext))
def __str__(f):
from sympy.printing.str import sstr
return sstr(f.as_expr())
__repr__ = __str__
@property
def is_ground(f):
return f.rep.is_ground
def to_ground(f):
[c] = f.rep.to_list()
return c
ExtElem = ExtensionElement
class MonogenicFiniteExtension(Domain):
r"""
Finite extension generated by an integral element.
The generator is defined by a monic univariate
polynomial derived from the argument ``mod``.
A shorter alias is ``FiniteExtension``.
Examples
========
Quadratic integer ring $\mathbb{Z}[\sqrt2]$:
>>> from sympy import Symbol, Poly
>>> from sympy.polys.agca.extensions import FiniteExtension
>>> x = Symbol('x')
>>> R = FiniteExtension(Poly(x**2 - 2)); R
ZZ[x]/(x**2 - 2)
>>> R.rank
2
>>> R(1 + x)*(3 - 2*x)
x - 1
Finite field $GF(5^3)$ defined by the primitive
polynomial $x^3 + x^2 + 2$ (over $\mathbb{Z}_5$).
>>> F = FiniteExtension(Poly(x**3 + x**2 + 2, modulus=5)); F
GF(5)[x]/(x**3 + x**2 + 2)
>>> F.basis
(1, x, x**2)
>>> F(x + 3)/(x**2 + 2)
-2*x**2 + x + 2
Function field of an elliptic curve:
>>> t = Symbol('t')
>>> FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
ZZ(x)[t]/(t**2 - x**3 - x + 1)
"""
is_FiniteExtension = True
dtype = ExtensionElement
def __init__(self, mod):
if not (isinstance(mod, Poly) and mod.is_univariate):
raise TypeError("modulus must be a univariate Poly")
# Using auto=True (default) potentially changes the ground domain to a
# field whereas auto=False raises if division is not exact. We'll let
# the caller decide whether or not they want to put the ground domain
# over a field. In most uses mod is already monic.
mod = mod.monic(auto=False)
self.rank = mod.degree()
self.modulus = mod
self.mod = mod.rep # DMP representation
self.domain = dom = mod.domain
self.ring = dom.old_poly_ring(*mod.gens)
self.zero = self.convert(self.ring.zero)
self.one = self.convert(self.ring.one)
gen = self.ring.gens[0]
self.symbol = self.ring.symbols[0]
self.generator = self.convert(gen)
self.basis = tuple(self.convert(gen**i) for i in range(self.rank))
# XXX: It might be necessary to check mod.is_irreducible here
self.is_Field = self.domain.is_Field
def new(self, arg):
rep = self.ring.convert(arg)
return ExtElem(rep % self.mod, self)
def __eq__(self, other):
if not isinstance(other, FiniteExtension):
return False
return self.modulus == other.modulus
def __hash__(self):
return hash((self.__class__.__name__, self.modulus))
def __str__(self):
return "%s/(%s)" % (self.ring, self.modulus.as_expr())
__repr__ = __str__
@property
def has_CharacteristicZero(self):
return self.domain.has_CharacteristicZero
def characteristic(self):
return self.domain.characteristic()
def convert(self, f, base=None):
rep = self.ring.convert(f, base)
return ExtElem(rep % self.mod, self)
def convert_from(self, f, base):
rep = self.ring.convert(f, base)
return ExtElem(rep % self.mod, self)
def to_sympy(self, f):
return self.ring.to_sympy(f.rep)
def from_sympy(self, f):
return self.convert(f)
def set_domain(self, K):
mod = self.modulus.set_domain(K)
return self.__class__(mod)
def drop(self, *symbols):
if self.symbol in symbols:
raise GeneratorsError('Can not drop generator from FiniteExtension')
K = self.domain.drop(*symbols)
return self.set_domain(K)
def quo(self, f, g):
return self.exquo(f, g)
def exquo(self, f, g):
rep = self.ring.exquo(f.rep, g.rep)
return ExtElem(rep % self.mod, self)
def is_negative(self, a):
return False
def is_unit(self, a):
if self.is_Field:
return bool(a)
elif a.is_ground:
return self.domain.is_unit(a.to_ground())
FiniteExtension = MonogenicFiniteExtension
|