File size: 6,741 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from sympy.core.add import Add
from sympy.core.function import diff
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer, Rational, oo, pi)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.testing.pytest import raises

from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.state import (
    Ket, Bra, TimeDepKet, TimeDepBra,
    KetBase, BraBase, StateBase, Wavefunction,
    OrthogonalKet, OrthogonalBra
)
from sympy.physics.quantum.hilbert import HilbertSpace

x, y, t = symbols('x,y,t')


class CustomKet(Ket):
    @classmethod
    def default_args(self):
        return ("test",)


class CustomKetMultipleLabels(Ket):
    @classmethod
    def default_args(self):
        return ("r", "theta", "phi")


class CustomTimeDepKet(TimeDepKet):
    @classmethod
    def default_args(self):
        return ("test", "t")


class CustomTimeDepKetMultipleLabels(TimeDepKet):
    @classmethod
    def default_args(self):
        return ("r", "theta", "phi", "t")


def test_ket():
    k = Ket('0')

    assert isinstance(k, Ket)
    assert isinstance(k, KetBase)
    assert isinstance(k, StateBase)
    assert isinstance(k, QExpr)

    assert k.label == (Symbol('0'),)
    assert k.hilbert_space == HilbertSpace()
    assert k.is_commutative is False

    # Make sure this doesn't get converted to the number pi.
    k = Ket('pi')
    assert k.label == (Symbol('pi'),)

    k = Ket(x, y)
    assert k.label == (x, y)
    assert k.hilbert_space == HilbertSpace()
    assert k.is_commutative is False

    assert k.dual_class() == Bra
    assert k.dual == Bra(x, y)
    assert k.subs(x, y) == Ket(y, y)

    k = CustomKet()
    assert k == CustomKet("test")

    k = CustomKetMultipleLabels()
    assert k == CustomKetMultipleLabels("r", "theta", "phi")

    assert Ket() == Ket('psi')


def test_bra():
    b = Bra('0')

    assert isinstance(b, Bra)
    assert isinstance(b, BraBase)
    assert isinstance(b, StateBase)
    assert isinstance(b, QExpr)

    assert b.label == (Symbol('0'),)
    assert b.hilbert_space == HilbertSpace()
    assert b.is_commutative is False

    # Make sure this doesn't get converted to the number pi.
    b = Bra('pi')
    assert b.label == (Symbol('pi'),)

    b = Bra(x, y)
    assert b.label == (x, y)
    assert b.hilbert_space == HilbertSpace()
    assert b.is_commutative is False

    assert b.dual_class() == Ket
    assert b.dual == Ket(x, y)
    assert b.subs(x, y) == Bra(y, y)

    assert Bra() == Bra('psi')


def test_ops():
    k0 = Ket(0)
    k1 = Ket(1)
    k = 2*I*k0 - (x/sqrt(2))*k1
    assert k == Add(Mul(2, I, k0),
        Mul(Rational(-1, 2), x, Pow(2, S.Half), k1))


def test_time_dep_ket():
    k = TimeDepKet(0, t)

    assert isinstance(k, TimeDepKet)
    assert isinstance(k, KetBase)
    assert isinstance(k, StateBase)
    assert isinstance(k, QExpr)

    assert k.label == (Integer(0),)
    assert k.args == (Integer(0), t)
    assert k.time == t

    assert k.dual_class() == TimeDepBra
    assert k.dual == TimeDepBra(0, t)

    assert k.subs(t, 2) == TimeDepKet(0, 2)

    k = TimeDepKet(x, 0.5)
    assert k.label == (x,)
    assert k.args == (x, sympify(0.5))

    k = CustomTimeDepKet()
    assert k.label == (Symbol("test"),)
    assert k.time == Symbol("t")
    assert k == CustomTimeDepKet("test", "t")

    k = CustomTimeDepKetMultipleLabels()
    assert k.label == (Symbol("r"), Symbol("theta"), Symbol("phi"))
    assert k.time == Symbol("t")
    assert k == CustomTimeDepKetMultipleLabels("r", "theta", "phi", "t")

    assert TimeDepKet() == TimeDepKet("psi", "t")


def test_time_dep_bra():
    b = TimeDepBra(0, t)

    assert isinstance(b, TimeDepBra)
    assert isinstance(b, BraBase)
    assert isinstance(b, StateBase)
    assert isinstance(b, QExpr)

    assert b.label == (Integer(0),)
    assert b.args == (Integer(0), t)
    assert b.time == t

    assert b.dual_class() == TimeDepKet
    assert b.dual == TimeDepKet(0, t)

    k = TimeDepBra(x, 0.5)
    assert k.label == (x,)
    assert k.args == (x, sympify(0.5))

    assert TimeDepBra() == TimeDepBra("psi", "t")


def test_bra_ket_dagger():
    x = symbols('x', complex=True)
    k = Ket('k')
    b = Bra('b')
    assert Dagger(k) == Bra('k')
    assert Dagger(b) == Ket('b')
    assert Dagger(k).is_commutative is False

    k2 = Ket('k2')
    e = 2*I*k + x*k2
    assert Dagger(e) == conjugate(x)*Dagger(k2) - 2*I*Dagger(k)


def test_wavefunction():
    x, y = symbols('x y', real=True)
    L = symbols('L', positive=True)
    n = symbols('n', integer=True, positive=True)

    f = Wavefunction(x**2, x)
    p = f.prob()
    lims = f.limits

    assert f.is_normalized is False
    assert f.norm is oo
    assert f(10) == 100
    assert p(10) == 10000
    assert lims[x] == (-oo, oo)
    assert diff(f, x) == Wavefunction(2*x, x)
    raises(NotImplementedError, lambda: f.normalize())
    assert conjugate(f) == Wavefunction(conjugate(f.expr), x)
    assert conjugate(f) == Dagger(f)

    g = Wavefunction(x**2*y + y**2*x, (x, 0, 1), (y, 0, 2))
    lims_g = g.limits

    assert lims_g[x] == (0, 1)
    assert lims_g[y] == (0, 2)
    assert g.is_normalized is False
    assert g.norm == sqrt(42)/3
    assert g(2, 4) == 0
    assert g(1, 1) == 2
    assert diff(diff(g, x), y) == Wavefunction(2*x + 2*y, (x, 0, 1), (y, 0, 2))
    assert conjugate(g) == Wavefunction(conjugate(g.expr), *g.args[1:])
    assert conjugate(g) == Dagger(g)

    h = Wavefunction(sqrt(5)*x**2, (x, 0, 1))
    assert h.is_normalized is True
    assert h.normalize() == h
    assert conjugate(h) == Wavefunction(conjugate(h.expr), (x, 0, 1))
    assert conjugate(h) == Dagger(h)

    piab = Wavefunction(sin(n*pi*x/L), (x, 0, L))
    assert piab.norm == sqrt(L/2)
    assert piab(L + 1) == 0
    assert piab(0.5) == sin(0.5*n*pi/L)
    assert piab(0.5, n=1, L=1) == sin(0.5*pi)
    assert piab.normalize() == \
        Wavefunction(sqrt(2)/sqrt(L)*sin(n*pi*x/L), (x, 0, L))
    assert conjugate(piab) == Wavefunction(conjugate(piab.expr), (x, 0, L))
    assert conjugate(piab) == Dagger(piab)

    k = Wavefunction(x**2, 'x')
    assert type(k.variables[0]) == Symbol

def test_orthogonal_states():
    braket = OrthogonalBra(x) * OrthogonalKet(x)
    assert braket.doit() == 1

    braket = OrthogonalBra(x) * OrthogonalKet(x+1)
    assert braket.doit() == 0

    braket = OrthogonalBra(x) * OrthogonalKet(y)
    assert braket.doit() == braket