File size: 8,957 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import random

from sympy.core.numbers import (Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import Matrix
from sympy.physics.quantum.qubit import (measure_all, measure_partial,
                                         matrix_to_qubit, matrix_to_density,
                                         qubit_to_matrix, IntQubit,
                                         IntQubitBra, QubitBra)
from sympy.physics.quantum.gate import (HadamardGate, CNOT, XGate, YGate,
                                        ZGate, PhaseGate)
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.represent import represent
from sympy.physics.quantum.shor import Qubit
from sympy.testing.pytest import raises
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.trace import Tr

x, y = symbols('x,y')

epsilon = .000001


def test_Qubit():
    array = [0, 0, 1, 1, 0]
    qb = Qubit('00110')
    assert qb.flip(0) == Qubit('00111')
    assert qb.flip(1) == Qubit('00100')
    assert qb.flip(4) == Qubit('10110')
    assert qb.qubit_values == (0, 0, 1, 1, 0)
    assert qb.dimension == 5
    for i in range(5):
        assert qb[i] == array[4 - i]
    assert len(qb) == 5
    qb = Qubit('110')


def test_QubitBra():
    qb = Qubit(0)
    qb_bra = QubitBra(0)
    assert qb.dual_class() == QubitBra
    assert qb_bra.dual_class() == Qubit

    qb = Qubit(1, 1, 0)
    qb_bra = QubitBra(1, 1, 0)
    assert represent(qb, nqubits=3).H == represent(qb_bra, nqubits=3)

    qb = Qubit(0, 1)
    qb_bra = QubitBra(1,0)
    assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(0)

    qb_bra = QubitBra(0, 1)
    assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(1)


def test_IntQubit():
    # issue 9136
    iqb = IntQubit(0, nqubits=1)
    assert qubit_to_matrix(Qubit('0')) == qubit_to_matrix(iqb)

    qb = Qubit('1010')
    assert qubit_to_matrix(IntQubit(qb)) == qubit_to_matrix(qb)

    iqb = IntQubit(1, nqubits=1)
    assert qubit_to_matrix(Qubit('1')) == qubit_to_matrix(iqb)
    assert qubit_to_matrix(IntQubit(1)) == qubit_to_matrix(iqb)

    iqb = IntQubit(7, nqubits=4)
    assert qubit_to_matrix(Qubit('0111')) == qubit_to_matrix(iqb)
    assert qubit_to_matrix(IntQubit(7, 4)) == qubit_to_matrix(iqb)

    iqb = IntQubit(8)
    assert iqb.as_int() == 8
    assert iqb.qubit_values == (1, 0, 0, 0)

    iqb = IntQubit(7, 4)
    assert iqb.qubit_values == (0, 1, 1, 1)
    assert IntQubit(3) == IntQubit(3, 2)

    #test Dual Classes
    iqb = IntQubit(3)
    iqb_bra = IntQubitBra(3)
    assert iqb.dual_class() == IntQubitBra
    assert iqb_bra.dual_class() == IntQubit

    iqb = IntQubit(5)
    iqb_bra = IntQubitBra(5)
    assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(1)

    iqb = IntQubit(4)
    iqb_bra = IntQubitBra(5)
    assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(0)
    raises(ValueError, lambda: IntQubit(4, 1))

    raises(ValueError, lambda: IntQubit('5'))
    raises(ValueError, lambda: IntQubit(5, '5'))
    raises(ValueError, lambda: IntQubit(5, nqubits='5'))
    raises(TypeError, lambda: IntQubit(5, bad_arg=True))

def test_superposition_of_states():
    state = 1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10')
    state_gate = CNOT(0, 1)*HadamardGate(0)*state
    state_expanded = Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2
    assert qapply(state_gate).expand() == state_expanded
    assert matrix_to_qubit(represent(state_gate, nqubits=2)) == state_expanded


#test apply methods
def test_apply_represent_equality():
    gates = [HadamardGate(int(3*random.random())),
     XGate(int(3*random.random())), ZGate(int(3*random.random())),
        YGate(int(3*random.random())), ZGate(int(3*random.random())),
        PhaseGate(int(3*random.random()))]

    circuit = Qubit(int(random.random()*2), int(random.random()*2),
    int(random.random()*2), int(random.random()*2), int(random.random()*2),
        int(random.random()*2))
    for i in range(int(random.random()*6)):
        circuit = gates[int(random.random()*6)]*circuit

    mat = represent(circuit, nqubits=6)
    states = qapply(circuit)
    state_rep = matrix_to_qubit(mat)
    states = states.expand()
    state_rep = state_rep.expand()
    assert state_rep == states


def test_matrix_to_qubits():
    qb = Qubit(0, 0, 0, 0)
    mat = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    assert matrix_to_qubit(mat) == qb
    assert qubit_to_matrix(qb) == mat

    state = 2*sqrt(2)*(Qubit(0, 0, 0) + Qubit(0, 0, 1) + Qubit(0, 1, 0) +
                       Qubit(0, 1, 1) + Qubit(1, 0, 0) + Qubit(1, 0, 1) +
                       Qubit(1, 1, 0) + Qubit(1, 1, 1))
    ones = sqrt(2)*2*Matrix([1, 1, 1, 1, 1, 1, 1, 1])
    assert matrix_to_qubit(ones) == state.expand()
    assert qubit_to_matrix(state) == ones


def test_measure_normalize():
    a, b = symbols('a b')
    state = a*Qubit('110') + b*Qubit('111')
    assert measure_partial(state, (0,), normalize=False) == \
        [(a*Qubit('110'), a*a.conjugate()), (b*Qubit('111'), b*b.conjugate())]
    assert measure_all(state, normalize=False) == \
        [(Qubit('110'), a*a.conjugate()), (Qubit('111'), b*b.conjugate())]


def test_measure_partial():
    #Basic test of collapse of entangled two qubits (Bell States)
    state = Qubit('01') + Qubit('10')
    assert measure_partial(state, (0,)) == \
        [(Qubit('10'), S.Half), (Qubit('01'), S.Half)]
    assert measure_partial(state, int(0)) == \
        [(Qubit('10'), S.Half), (Qubit('01'), S.Half)]
    assert measure_partial(state, (0,)) == \
        measure_partial(state, (1,))[::-1]

    #Test of more complex collapse and probability calculation
    state1 = sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111')
    assert measure_partial(state1, (0,)) == \
        [(sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111'), 1)]
    assert measure_partial(state1, (1, 2)) == measure_partial(state1, (3, 4))
    assert measure_partial(state1, (1, 2, 3)) == \
        [(Qubit('00001'), Rational(2, 3)), (Qubit('11111'), Rational(1, 3))]

    #test of measuring multiple bits at once
    state2 = Qubit('1111') + Qubit('1101') + Qubit('1011') + Qubit('1000')
    assert measure_partial(state2, (0, 1, 3)) == \
        [(Qubit('1000'), Rational(1, 4)), (Qubit('1101'), Rational(1, 4)),
         (Qubit('1011')/sqrt(2) + Qubit('1111')/sqrt(2), S.Half)]
    assert measure_partial(state2, (0,)) == \
        [(Qubit('1000'), Rational(1, 4)),
         (Qubit('1111')/sqrt(3) + Qubit('1101')/sqrt(3) +
          Qubit('1011')/sqrt(3), Rational(3, 4))]


def test_measure_all():
    assert measure_all(Qubit('11')) == [(Qubit('11'), 1)]
    state = Qubit('11') + Qubit('10')
    assert measure_all(state) == [(Qubit('10'), S.Half),
           (Qubit('11'), S.Half)]
    state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5)
    assert measure_all(state2) == \
        [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))]

    # from issue #12585
    assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)]


def test_eval_trace():
    q1 = Qubit('10110')
    q2 = Qubit('01010')
    d = Density([q1, 0.6], [q2, 0.4])

    t = Tr(d)
    assert t.doit() == 1.0

    # extreme bits
    t = Tr(d, 0)
    assert t.doit() == (0.4*Density([Qubit('0101'), 1]) +
                        0.6*Density([Qubit('1011'), 1]))
    t = Tr(d, 4)
    assert t.doit() == (0.4*Density([Qubit('1010'), 1]) +
                        0.6*Density([Qubit('0110'), 1]))
    # index somewhere in between
    t = Tr(d, 2)
    assert t.doit() == (0.4*Density([Qubit('0110'), 1]) +
                        0.6*Density([Qubit('1010'), 1]))
    #trace all indices
    t = Tr(d, [0, 1, 2, 3, 4])
    assert t.doit() == 1.0

    # trace some indices, initialized in
    # non-canonical order
    t = Tr(d, [2, 1, 3])
    assert t.doit() == (0.4*Density([Qubit('00'), 1]) +
                        0.6*Density([Qubit('10'), 1]))

    # mixed states
    q = (1/sqrt(2)) * (Qubit('00') + Qubit('11'))
    d = Density( [q, 1.0] )
    t = Tr(d, 0)
    assert t.doit() == (0.5*Density([Qubit('0'), 1]) +
                        0.5*Density([Qubit('1'), 1]))


def test_matrix_to_density():
    mat = Matrix([[0, 0], [0, 1]])
    assert matrix_to_density(mat) == Density([Qubit('1'), 1])

    mat = Matrix([[1, 0], [0, 0]])
    assert matrix_to_density(mat) == Density([Qubit('0'), 1])

    mat = Matrix([[0, 0], [0, 0]])
    assert matrix_to_density(mat) == 0

    mat = Matrix([[0, 0, 0, 0],
                  [0, 0, 0, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 0]])

    assert matrix_to_density(mat) == Density([Qubit('10'), 1])

    mat = Matrix([[1, 0, 0, 0],
                  [0, 0, 0, 0],
                  [0, 0, 0, 0],
                  [0, 0, 0, 0]])

    assert matrix_to_density(mat) == Density([Qubit('00'), 1])