File size: 1,931 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from sympy.core.numbers import (I, pi)
from sympy.core.symbol import Symbol
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import Matrix

from sympy.physics.quantum.qft import QFT, IQFT, RkGate
from sympy.physics.quantum.gate import (ZGate, SwapGate, HadamardGate, CGate,
                                        PhaseGate, TGate)
from sympy.physics.quantum.qubit import Qubit
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.represent import represent

from sympy.functions.elementary.complexes import sign


def test_RkGate():
    x = Symbol('x')
    assert RkGate(1, x).k == x
    assert RkGate(1, x).targets == (1,)
    assert RkGate(1, 1) == ZGate(1)
    assert RkGate(2, 2) == PhaseGate(2)
    assert RkGate(3, 3) == TGate(3)

    assert represent(
        RkGate(0, x), nqubits=1) == Matrix([[1, 0], [0, exp(sign(x)*2*pi*I/(2**abs(x)))]])


def test_quantum_fourier():
    assert QFT(0, 3).decompose() == \
        SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
        HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
        HadamardGate(2)

    assert IQFT(0, 3).decompose() == \
        HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
        HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)

    assert represent(QFT(0, 3), nqubits=3) == \
        Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])

    assert QFT(0, 4).decompose()  # non-trivial decomposition
    assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
        HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
    ).expand()


def test_qft_represent():
    c = QFT(0, 3)
    a = represent(c, nqubits=3)
    b = represent(c.decompose(), nqubits=3)
    assert a.evalf(n=10) == b.evalf(n=10)