File size: 13,187 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.symbol import Symbol
from sympy.utilities import numbered_symbols
from sympy.physics.quantum.gate import X, Y, Z, H, CNOT, CGate
from sympy.physics.quantum.identitysearch import bfs_identity_search
from sympy.physics.quantum.circuitutils import (kmp_table, find_subcircuit,
        replace_subcircuit, convert_to_symbolic_indices,
        convert_to_real_indices, random_reduce, random_insert,
        flatten_ids)
from sympy.testing.pytest import slow


def create_gate_sequence(qubit=0):
    gates = (X(qubit), Y(qubit), Z(qubit), H(qubit))
    return gates


def test_kmp_table():
    word = ('a', 'b', 'c', 'd', 'a', 'b', 'd')
    expected_table = [-1, 0, 0, 0, 0, 1, 2]
    assert expected_table == kmp_table(word)

    word = ('P', 'A', 'R', 'T', 'I', 'C', 'I', 'P', 'A', 'T', 'E', ' ',
            'I', 'N', ' ', 'P', 'A', 'R', 'A', 'C', 'H', 'U', 'T', 'E')
    expected_table = [-1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0,
                      0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0]
    assert expected_table == kmp_table(word)

    x = X(0)
    y = Y(0)
    z = Z(0)
    h = H(0)
    word = (x, y, y, x, z)
    expected_table = [-1, 0, 0, 0, 1]
    assert expected_table == kmp_table(word)

    word = (x, x, y, h, z)
    expected_table = [-1, 0, 1, 0, 0]
    assert expected_table == kmp_table(word)


def test_find_subcircuit():
    x = X(0)
    y = Y(0)
    z = Z(0)
    h = H(0)
    x1 = X(1)
    y1 = Y(1)

    i0 = Symbol('i0')
    x_i0 = X(i0)
    y_i0 = Y(i0)
    z_i0 = Z(i0)
    h_i0 = H(i0)

    circuit = (x, y, z)

    assert find_subcircuit(circuit, (x,)) == 0
    assert find_subcircuit(circuit, (x1,)) == -1
    assert find_subcircuit(circuit, (y,)) == 1
    assert find_subcircuit(circuit, (h,)) == -1
    assert find_subcircuit(circuit, Mul(x, h)) == -1
    assert find_subcircuit(circuit, Mul(x, y, z)) == 0
    assert find_subcircuit(circuit, Mul(y, z)) == 1
    assert find_subcircuit(Mul(*circuit), (x, y, z, h)) == -1
    assert find_subcircuit(Mul(*circuit), (z, y, x)) == -1
    assert find_subcircuit(circuit, (x,), start=2, end=1) == -1

    circuit = (x, y, x, y, z)
    assert find_subcircuit(Mul(*circuit), Mul(x, y, z)) == 2
    assert find_subcircuit(circuit, (x,), start=1) == 2
    assert find_subcircuit(circuit, (x, y), start=1, end=2) == -1
    assert find_subcircuit(Mul(*circuit), (x, y), start=1, end=3) == -1
    assert find_subcircuit(circuit, (x, y), start=1, end=4) == 2
    assert find_subcircuit(circuit, (x, y), start=2, end=4) == 2

    circuit = (x, y, z, x1, x, y, z, h, x, y, x1,
               x, y, z, h, y1, h)
    assert find_subcircuit(circuit, (x, y, z, h, y1)) == 11

    circuit = (x, y, x_i0, y_i0, z_i0, z)
    assert find_subcircuit(circuit, (x_i0, y_i0, z_i0)) == 2

    circuit = (x_i0, y_i0, z_i0, x_i0, y_i0, h_i0)
    subcircuit = (x_i0, y_i0, z_i0)
    result = find_subcircuit(circuit, subcircuit)
    assert result == 0


def test_replace_subcircuit():
    x = X(0)
    y = Y(0)
    z = Z(0)
    h = H(0)
    cnot = CNOT(1, 0)
    cgate_z = CGate((0,), Z(1))

    # Standard cases
    circuit = (z, y, x, x)
    remove = (z, y, x)
    assert replace_subcircuit(circuit, Mul(*remove)) == (x,)
    assert replace_subcircuit(circuit, remove + (x,)) == ()
    assert replace_subcircuit(circuit, remove, pos=1) == circuit
    assert replace_subcircuit(circuit, remove, pos=0) == (x,)
    assert replace_subcircuit(circuit, (x, x), pos=2) == (z, y)
    assert replace_subcircuit(circuit, (h,)) == circuit

    circuit = (x, y, x, y, z)
    remove = (x, y, z)
    assert replace_subcircuit(Mul(*circuit), Mul(*remove)) == (x, y)
    remove = (x, y, x, y)
    assert replace_subcircuit(circuit, remove) == (z,)

    circuit = (x, h, cgate_z, h, cnot)
    remove = (x, h, cgate_z)
    assert replace_subcircuit(circuit, Mul(*remove), pos=-1) == (h, cnot)
    assert replace_subcircuit(circuit, remove, pos=1) == circuit
    remove = (h, h)
    assert replace_subcircuit(circuit, remove) == circuit
    remove = (h, cgate_z, h, cnot)
    assert replace_subcircuit(circuit, remove) == (x,)

    replace = (h, x)
    actual = replace_subcircuit(circuit, remove,
                     replace=replace)
    assert actual == (x, h, x)

    circuit = (x, y, h, x, y, z)
    remove = (x, y)
    replace = (cnot, cgate_z)
    actual = replace_subcircuit(circuit, remove,
                     replace=Mul(*replace))
    assert actual == (cnot, cgate_z, h, x, y, z)

    actual = replace_subcircuit(circuit, remove,
                     replace=replace, pos=1)
    assert actual == (x, y, h, cnot, cgate_z, z)


def test_convert_to_symbolic_indices():
    (x, y, z, h) = create_gate_sequence()

    i0 = Symbol('i0')
    exp_map = {i0: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices((x,))
    assert actual == (X(i0),)
    assert act_map == exp_map

    expected = (X(i0), Y(i0), Z(i0), H(i0))
    exp_map = {i0: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h))
    assert actual == expected
    assert exp_map == act_map

    (x1, y1, z1, h1) = create_gate_sequence(1)
    i1 = Symbol('i1')

    expected = (X(i0), Y(i0), Z(i0), H(i0))
    exp_map = {i0: Integer(1)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, y1, z1, h1))
    assert actual == expected
    assert act_map == exp_map

    expected = (X(i0), Y(i0), Z(i0), H(i0), X(i1), Y(i1), Z(i1), H(i1))
    exp_map = {i0: Integer(0), i1: Integer(1)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h,
                                         x1, y1, z1, h1))
    assert actual == expected
    assert act_map == exp_map

    exp_map = {i0: Integer(1), i1: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x1, y1,
                                         z1, h1, x, y, z, h))
    assert actual == expected
    assert act_map == exp_map

    expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1))
    exp_map = {i0: Integer(0), i1: Integer(1)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x, x1,
                                         y, y1, z, z1, h, h1))
    assert actual == expected
    assert act_map == exp_map

    exp_map = {i0: Integer(1), i1: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, x, y1, y,
                                         z1, z, h1, h))
    assert actual == expected
    assert act_map == exp_map

    cnot_10 = CNOT(1, 0)
    cnot_01 = CNOT(0, 1)
    cgate_z_10 = CGate(1, Z(0))
    cgate_z_01 = CGate(0, Z(1))

    expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
                H(i0), H(i1), CNOT(i1, i0), CNOT(i0, i1),
                CGate(i1, Z(i0)), CGate(i0, Z(i1)))
    exp_map = {i0: Integer(0), i1: Integer(1)}
    args = (x, x1, y, y1, z, z1, h, h1, cnot_10, cnot_01,
            cgate_z_10, cgate_z_01)
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    args = (x1, x, y1, y, z1, z, h1, h, cnot_10, cnot_01,
            cgate_z_10, cgate_z_01)
    expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
                H(i0), H(i1), CNOT(i0, i1), CNOT(i1, i0),
                CGate(i0, Z(i1)), CGate(i1, Z(i0)))
    exp_map = {i0: Integer(1), i1: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    args = (cnot_10, h, cgate_z_01, h)
    expected = (CNOT(i0, i1), H(i1), CGate(i1, Z(i0)), H(i1))
    exp_map = {i0: Integer(1), i1: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    args = (cnot_01, h1, cgate_z_10, h1)
    exp_map = {i0: Integer(0), i1: Integer(1)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    args = (cnot_10, h1, cgate_z_01, h1)
    expected = (CNOT(i0, i1), H(i0), CGate(i1, Z(i0)), H(i0))
    exp_map = {i0: Integer(1), i1: Integer(0)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    i2 = Symbol('i2')
    ccgate_z = CGate(0, CGate(1, Z(2)))
    ccgate_x = CGate(1, CGate(2, X(0)))
    args = (ccgate_z, ccgate_x)

    expected = (CGate(i0, CGate(i1, Z(i2))), CGate(i1, CGate(i2, X(i0))))
    exp_map = {i0: Integer(0), i1: Integer(1), i2: Integer(2)}
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map

    ndx_map = {i0: Integer(0)}
    index_gen = numbered_symbols(prefix='i', start=1)
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args,
                                         qubit_map=ndx_map,
                                         start=i0,
                                         gen=index_gen)
    assert actual == expected
    assert act_map == exp_map

    i3 = Symbol('i3')
    cgate_x0_c321 = CGate((3, 2, 1), X(0))
    exp_map = {i0: Integer(3), i1: Integer(2),
               i2: Integer(1), i3: Integer(0)}
    expected = (CGate((i0, i1, i2), X(i3)),)
    args = (cgate_x0_c321,)
    actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
    assert actual == expected
    assert act_map == exp_map


def test_convert_to_real_indices():
    i0 = Symbol('i0')
    i1 = Symbol('i1')

    (x, y, z, h) = create_gate_sequence()

    x_i0 = X(i0)
    y_i0 = Y(i0)
    z_i0 = Z(i0)

    qubit_map = {i0: 0}
    args = (z_i0, y_i0, x_i0)
    expected = (z, y, x)
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected

    cnot_10 = CNOT(1, 0)
    cnot_01 = CNOT(0, 1)
    cgate_z_10 = CGate(1, Z(0))
    cgate_z_01 = CGate(0, Z(1))

    cnot_i1_i0 = CNOT(i1, i0)
    cnot_i0_i1 = CNOT(i0, i1)
    cgate_z_i1_i0 = CGate(i1, Z(i0))

    qubit_map = {i0: 0, i1: 1}
    args = (cnot_i1_i0,)
    expected = (cnot_10,)
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected

    args = (cgate_z_i1_i0,)
    expected = (cgate_z_10,)
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected

    args = (cnot_i0_i1,)
    expected = (cnot_01,)
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected

    qubit_map = {i0: 1, i1: 0}
    args = (cgate_z_i1_i0,)
    expected = (cgate_z_01,)
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected

    i2 = Symbol('i2')
    ccgate_z = CGate(i0, CGate(i1, Z(i2)))
    ccgate_x = CGate(i1, CGate(i2, X(i0)))

    qubit_map = {i0: 0, i1: 1, i2: 2}
    args = (ccgate_z, ccgate_x)
    expected = (CGate(0, CGate(1, Z(2))), CGate(1, CGate(2, X(0))))
    actual = convert_to_real_indices(Mul(*args), qubit_map)
    assert actual == expected

    qubit_map = {i0: 1, i2: 0, i1: 2}
    args = (ccgate_x, ccgate_z)
    expected = (CGate(2, CGate(0, X(1))), CGate(1, CGate(2, Z(0))))
    actual = convert_to_real_indices(args, qubit_map)
    assert actual == expected


@slow
def test_random_reduce():
    x = X(0)
    y = Y(0)
    z = Z(0)
    h = H(0)
    cnot = CNOT(1, 0)
    cgate_z = CGate((0,), Z(1))

    gate_list = [x, y, z]
    ids = list(bfs_identity_search(gate_list, 1, max_depth=4))

    circuit = (x, y, h, z, cnot)
    assert random_reduce(circuit, []) == circuit
    assert random_reduce(circuit, ids) == circuit

    seq = [2, 11, 9, 3, 5]
    circuit = (x, y, z, x, y, h)
    assert random_reduce(circuit, ids, seed=seq) == (x, y, h)

    circuit = (x, x, y, y, z, z)
    assert random_reduce(circuit, ids, seed=seq) == (x, x, y, y)

    seq = [14, 13, 0]
    assert random_reduce(circuit, ids, seed=seq) == (y, y, z, z)

    gate_list = [x, y, z, h, cnot, cgate_z]
    ids = list(bfs_identity_search(gate_list, 2, max_depth=4))

    seq = [25]
    circuit = (x, y, z, y, h, y, h, cgate_z, h, cnot)
    expected = (x, y, z, cgate_z, h, cnot)
    assert random_reduce(circuit, ids, seed=seq) == expected
    circuit = Mul(*circuit)
    assert random_reduce(circuit, ids, seed=seq) == expected


@slow
def test_random_insert():
    x = X(0)
    y = Y(0)
    z = Z(0)
    h = H(0)
    cnot = CNOT(1, 0)
    cgate_z = CGate((0,), Z(1))

    choices = [(x, x)]
    circuit = (y, y)
    loc, choice = 0, 0
    actual = random_insert(circuit, choices, seed=[loc, choice])
    assert actual == (x, x, y, y)

    circuit = (x, y, z, h)
    choices = [(h, h), (x, y, z)]
    expected = (x, x, y, z, y, z, h)
    loc, choice = 1, 1
    actual = random_insert(circuit, choices, seed=[loc, choice])
    assert actual == expected

    gate_list = [x, y, z, h, cnot, cgate_z]
    ids = list(bfs_identity_search(gate_list, 2, max_depth=4))

    eq_ids = flatten_ids(ids)

    circuit = (x, y, h, cnot, cgate_z)
    expected = (x, z, x, z, x, y, h, cnot, cgate_z)
    loc, choice = 1, 30
    actual = random_insert(circuit, eq_ids, seed=[loc, choice])
    assert actual == expected
    circuit = Mul(*circuit)
    actual = random_insert(circuit, eq_ids, seed=[loc, choice])
    assert actual == expected