File size: 9,159 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from sympy.concrete.summations import Sum
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp
from sympy.functions.special.tensor_functions import KroneckerDelta


def test_cg_simp_add():
    j, m1, m1p, m2, m2p = symbols('j m1 m1p m2 m2p')
    # Test Varshalovich 8.7.1 Eq 1
    a = CG(S.Half, S.Half, 0, 0, S.Half, S.Half)
    b = CG(S.Half, Rational(-1, 2), 0, 0, S.Half, Rational(-1, 2))
    c = CG(1, 1, 0, 0, 1, 1)
    d = CG(1, 0, 0, 0, 1, 0)
    e = CG(1, -1, 0, 0, 1, -1)
    assert cg_simp(a + b) == 2
    assert cg_simp(c + d + e) == 3
    assert cg_simp(a + b + c + d + e) == 5
    assert cg_simp(a + b + c) == 2 + c
    assert cg_simp(2*a + b) == 2 + a
    assert cg_simp(2*c + d + e) == 3 + c
    assert cg_simp(5*a + 5*b) == 10
    assert cg_simp(5*c + 5*d + 5*e) == 15
    assert cg_simp(-a - b) == -2
    assert cg_simp(-c - d - e) == -3
    assert cg_simp(-6*a - 6*b) == -12
    assert cg_simp(-4*c - 4*d - 4*e) == -12
    a = CG(S.Half, S.Half, j, 0, S.Half, S.Half)
    b = CG(S.Half, Rational(-1, 2), j, 0, S.Half, Rational(-1, 2))
    c = CG(1, 1, j, 0, 1, 1)
    d = CG(1, 0, j, 0, 1, 0)
    e = CG(1, -1, j, 0, 1, -1)
    assert cg_simp(a + b) == 2*KroneckerDelta(j, 0)
    assert cg_simp(c + d + e) == 3*KroneckerDelta(j, 0)
    assert cg_simp(a + b + c + d + e) == 5*KroneckerDelta(j, 0)
    assert cg_simp(a + b + c) == 2*KroneckerDelta(j, 0) + c
    assert cg_simp(2*a + b) == 2*KroneckerDelta(j, 0) + a
    assert cg_simp(2*c + d + e) == 3*KroneckerDelta(j, 0) + c
    assert cg_simp(5*a + 5*b) == 10*KroneckerDelta(j, 0)
    assert cg_simp(5*c + 5*d + 5*e) == 15*KroneckerDelta(j, 0)
    assert cg_simp(-a - b) == -2*KroneckerDelta(j, 0)
    assert cg_simp(-c - d - e) == -3*KroneckerDelta(j, 0)
    assert cg_simp(-6*a - 6*b) == -12*KroneckerDelta(j, 0)
    assert cg_simp(-4*c - 4*d - 4*e) == -12*KroneckerDelta(j, 0)
    # Test Varshalovich 8.7.1 Eq 2
    a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)
    b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
    c = CG(1, 1, 1, -1, 0, 0)
    d = CG(1, 0, 1, 0, 0, 0)
    e = CG(1, -1, 1, 1, 0, 0)
    assert cg_simp(a - b) == sqrt(2)
    assert cg_simp(c - d + e) == sqrt(3)
    assert cg_simp(a - b + c - d + e) == sqrt(2) + sqrt(3)
    assert cg_simp(a - b + c) == sqrt(2) + c
    assert cg_simp(2*a - b) == sqrt(2) + a
    assert cg_simp(2*c - d + e) == sqrt(3) + c
    assert cg_simp(5*a - 5*b) == 5*sqrt(2)
    assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)
    assert cg_simp(-a + b) == -sqrt(2)
    assert cg_simp(-c + d - e) == -sqrt(3)
    assert cg_simp(-6*a + 6*b) == -6*sqrt(2)
    assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)
    a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), j, 0)
    b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, j, 0)
    c = CG(1, 1, 1, -1, j, 0)
    d = CG(1, 0, 1, 0, j, 0)
    e = CG(1, -1, 1, 1, j, 0)
    assert cg_simp(a - b) == sqrt(2)*KroneckerDelta(j, 0)
    assert cg_simp(c - d + e) == sqrt(3)*KroneckerDelta(j, 0)
    assert cg_simp(a - b + c - d + e) == sqrt(
        2)*KroneckerDelta(j, 0) + sqrt(3)*KroneckerDelta(j, 0)
    assert cg_simp(a - b + c) == sqrt(2)*KroneckerDelta(j, 0) + c
    assert cg_simp(2*a - b) == sqrt(2)*KroneckerDelta(j, 0) + a
    assert cg_simp(2*c - d + e) == sqrt(3)*KroneckerDelta(j, 0) + c
    assert cg_simp(5*a - 5*b) == 5*sqrt(2)*KroneckerDelta(j, 0)
    assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)*KroneckerDelta(j, 0)
    assert cg_simp(-a + b) == -sqrt(2)*KroneckerDelta(j, 0)
    assert cg_simp(-c + d - e) == -sqrt(3)*KroneckerDelta(j, 0)
    assert cg_simp(-6*a + 6*b) == -6*sqrt(2)*KroneckerDelta(j, 0)
    assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)*KroneckerDelta(j, 0)
    # Test Varshalovich 8.7.2 Eq 9
    # alpha=alphap,beta=betap case
    # numerical
    a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0)**2
    b = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)**2
    c = CG(1, 0, 1, 1, 1, 1)**2
    d = CG(1, 0, 1, 1, 2, 1)**2
    assert cg_simp(a + b) == 1
    assert cg_simp(c + d) == 1
    assert cg_simp(a + b + c + d) == 2
    assert cg_simp(4*a + 4*b) == 4
    assert cg_simp(4*c + 4*d) == 4
    assert cg_simp(5*a + 3*b) == 3 + 2*a
    assert cg_simp(5*c + 3*d) == 3 + 2*c
    assert cg_simp(-a - b) == -1
    assert cg_simp(-c - d) == -1
    # symbolic
    a = CG(S.Half, m1, S.Half, m2, 1, 1)**2
    b = CG(S.Half, m1, S.Half, m2, 1, 0)**2
    c = CG(S.Half, m1, S.Half, m2, 1, -1)**2
    d = CG(S.Half, m1, S.Half, m2, 0, 0)**2
    assert cg_simp(a + b + c + d) == 1
    assert cg_simp(4*a + 4*b + 4*c + 4*d) == 4
    assert cg_simp(3*a + 5*b + 3*c + 4*d) == 3 + 2*b + d
    assert cg_simp(-a - b - c - d) == -1
    a = CG(1, m1, 1, m2, 2, 2)**2
    b = CG(1, m1, 1, m2, 2, 1)**2
    c = CG(1, m1, 1, m2, 2, 0)**2
    d = CG(1, m1, 1, m2, 2, -1)**2
    e = CG(1, m1, 1, m2, 2, -2)**2
    f = CG(1, m1, 1, m2, 1, 1)**2
    g = CG(1, m1, 1, m2, 1, 0)**2
    h = CG(1, m1, 1, m2, 1, -1)**2
    i = CG(1, m1, 1, m2, 0, 0)**2
    assert cg_simp(a + b + c + d + e + f + g + h + i) == 1
    assert cg_simp(4*(a + b + c + d + e + f + g + h + i)) == 4
    assert cg_simp(a + b + 2*c + d + 4*e + f + g + h + i) == 1 + c + 3*e
    assert cg_simp(-a - b - c - d - e - f - g - h - i) == -1
    # alpha!=alphap or beta!=betap case
    # numerical
    a = CG(S.Half, S(
        1)/2, S.Half, Rational(-1, 2), 1, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 1, 0)
    b = CG(S.Half, S(
        1)/2, S.Half, Rational(-1, 2), 0, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
    c = CG(1, 1, 1, 0, 2, 1)*CG(1, 0, 1, 1, 2, 1)
    d = CG(1, 1, 1, 0, 1, 1)*CG(1, 0, 1, 1, 1, 1)
    assert cg_simp(a + b) == 0
    assert cg_simp(c + d) == 0
    # symbolic
    a = CG(S.Half, m1, S.Half, m2, 1, 1)*CG(S.Half, m1p, S.Half, m2p, 1, 1)
    b = CG(S.Half, m1, S.Half, m2, 1, 0)*CG(S.Half, m1p, S.Half, m2p, 1, 0)
    c = CG(S.Half, m1, S.Half, m2, 1, -1)*CG(S.Half, m1p, S.Half, m2p, 1, -1)
    d = CG(S.Half, m1, S.Half, m2, 0, 0)*CG(S.Half, m1p, S.Half, m2p, 0, 0)
    assert cg_simp(a + b + c + d) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
    a = CG(1, m1, 1, m2, 2, 2)*CG(1, m1p, 1, m2p, 2, 2)
    b = CG(1, m1, 1, m2, 2, 1)*CG(1, m1p, 1, m2p, 2, 1)
    c = CG(1, m1, 1, m2, 2, 0)*CG(1, m1p, 1, m2p, 2, 0)
    d = CG(1, m1, 1, m2, 2, -1)*CG(1, m1p, 1, m2p, 2, -1)
    e = CG(1, m1, 1, m2, 2, -2)*CG(1, m1p, 1, m2p, 2, -2)
    f = CG(1, m1, 1, m2, 1, 1)*CG(1, m1p, 1, m2p, 1, 1)
    g = CG(1, m1, 1, m2, 1, 0)*CG(1, m1p, 1, m2p, 1, 0)
    h = CG(1, m1, 1, m2, 1, -1)*CG(1, m1p, 1, m2p, 1, -1)
    i = CG(1, m1, 1, m2, 0, 0)*CG(1, m1p, 1, m2p, 0, 0)
    assert cg_simp(
        a + b + c + d + e + f + g + h + i) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)


def test_cg_simp_sum():
    x, a, b, c, cp, alpha, beta, gamma, gammap = symbols(
        'x a b c cp alpha beta gamma gammap')
    # Varshalovich 8.7.1 Eq 1
    assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)
                   )) == x*(2*a + 1)*KroneckerDelta(b, 0)
    assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)) + CG(1, 0, 1, 0, 1, 0)) == x*(2*a + 1)*KroneckerDelta(b, 0) + CG(1, 0, 1, 0, 1, 0)
    assert cg_simp(2 * Sum(CG(1, alpha, 0, 0, 1, alpha), (alpha, -1, 1))) == 6
    # Varshalovich 8.7.1 Eq 2
    assert cg_simp(x*Sum((-1)**(a - alpha) * CG(a, alpha, a, -alpha, c,
                   0), (alpha, -a, a))) == x*sqrt(2*a + 1)*KroneckerDelta(c, 0)
    assert cg_simp(3*Sum((-1)**(2 - alpha) * CG(
        2, alpha, 2, -alpha, 0, 0), (alpha, -2, 2))) == 3*sqrt(5)
    # Varshalovich 8.7.2 Eq 4
    assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)
    assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, c, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(gamma, gammap)
    assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gamma), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)
    assert cg_simp(Sum(CG(
        a, alpha, b, beta, c, gamma)**2, (alpha, -a, a), (beta, -b, b))) == 1
    assert cg_simp(Sum(CG(2, alpha, 1, beta, 2, gamma)*CG(2, alpha, 1, beta, 2, gammap), (alpha, -2, 2), (beta, -1, 1))) == KroneckerDelta(gamma, gammap)


def test_doit():
    assert Wigner3j(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0).doit() == -sqrt(2)/2
    assert Wigner3j(1/2,1/2,1/2,1/2,1/2,1/2).doit() == 0
    assert Wigner3j(9/2,9/2,9/2,9/2,9/2,9/2).doit() ==  0
    assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105
    assert Wigner6j(3, 1, 2, 2, 2, 1).doit() == sqrt(21) / 105
    assert Wigner9j(
        2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0).doit() == sqrt(2)/12
    assert CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0).doit() == sqrt(2)/2
    # J minus M is not integer
    assert Wigner3j(1, -1, S.Half, S.Half, 1, S.Half).doit() == 0
    assert CG(4, -1, S.Half, S.Half, 4, Rational(-1, 2)).doit() == 0