File size: 8,553 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from sympy.core.numbers import comp, Rational
from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
        deviation, brewster_angle, critical_angle, lens_makers_formula,
        mirror_formula, lens_formula, hyperfocal_distance,
        transverse_magnification)
from sympy.physics.optics.medium import Medium
from sympy.physics.units import e0

from sympy.core.numbers import oo
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import Matrix
from sympy.geometry.point import Point3D
from sympy.geometry.line import Ray3D
from sympy.geometry.plane import Plane

from sympy.testing.pytest import raises


ae = lambda a, b, n: comp(a, b, 10**-n)


def test_refraction_angle():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1')
    m2 = Medium('m2')
    r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    i = Matrix([1, 1, 1])
    n = Matrix([0, 0, 1])
    normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
    P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    assert refraction_angle(r1, 1, 1, n) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle(i, 1, 1, plane=P) == Matrix([
                                            [ 1],
                                            [ 1],
                                            [-1]])
    assert refraction_angle(r1, 1, 1, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, m1, 1.33, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
    assert refraction_angle(r1, 1, m2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, n1, n2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
    assert refraction_angle(r1, 1.33, 1, plane=P) == 0  # TIR
    assert refraction_angle(r1, 1, 1, normal_ray) == \
        Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
    assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
    assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
    raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
    raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
    raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
    raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))


def test_fresnel_coefficients():
    assert all(ae(i, j, 5) for i, j in zip(
        fresnel_coefficients(0.5, 1, 1.33),
        [0.11163, -0.17138, 0.83581, 0.82862]))
    assert all(ae(i, j, 5) for i, j in zip(
        fresnel_coefficients(0.5, 1.33, 1),
        [-0.07726, 0.20482, 1.22724, 1.20482]))
    m1 = Medium('m1')
    m2 = Medium('m2', n=2)
    assert all(ae(i, j, 5) for i, j in zip(
        fresnel_coefficients(0.3, m1, m2),
        [0.31784, -0.34865, 0.65892, 0.65135]))
    ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
    got = fresnel_coefficients(0.6, m2, m1)
    for i, j in zip(got, ans):
        for a, b in zip(i.as_real_imag(), j):
            assert ae(a, b, 5)


def test_deviation():
    n1, n2 = symbols('n1, n2')
    r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    n = Matrix([0, 0, 1])
    i = Matrix([-1, -1, -1])
    normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
    P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    assert deviation(r1, 1, 1, normal=n) == 0
    assert deviation(r1, 1, 1, plane=P) == 0
    assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
    assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
    assert deviation(r1, 1.33, 1, plane=P) is None  # TIR
    assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
    assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
    assert ae(deviation(0.5, 1, 2), -0.25793, 5)
    assert ae(deviation(0.5, 2, 1), 0.78293, 5)


def test_brewster_angle():
    m1 = Medium('m1', n=1)
    m2 = Medium('m2', n=1.33)
    assert ae(brewster_angle(m1, m2), 0.93, 2)
    m1 = Medium('m1', permittivity=e0, n=1)
    m2 = Medium('m2', permittivity=e0, n=1.33)
    assert ae(brewster_angle(m1, m2), 0.93, 2)
    assert ae(brewster_angle(1, 1.33), 0.93, 2)


def test_critical_angle():
    m1 = Medium('m1', n=1)
    m2 = Medium('m2', n=1.33)
    assert ae(critical_angle(m2, m1), 0.85, 2)


def test_lens_makers_formula():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1', permittivity=e0, n=1)
    m2 = Medium('m2', permittivity=e0, n=1.33)
    assert lens_makers_formula(n1, n2, 10, -10) == 5.0*n2/(n1 - n2)
    assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
    assert ae(lens_makers_formula(1.33, 1, 10, -10),  15.15, 2)


def test_mirror_formula():
    u, v, f = symbols('u, v, f')
    assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
    assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
    assert mirror_formula(u=u, v=v) == u*v/(u + v)
    assert mirror_formula(u=oo, v=v) == v
    assert mirror_formula(u=oo, v=oo) is oo
    assert mirror_formula(focal_length=oo, u=u) == -u
    assert mirror_formula(u=u, v=oo) == u
    assert mirror_formula(focal_length=oo, v=oo) is oo
    assert mirror_formula(focal_length=f, v=oo) == f
    assert mirror_formula(focal_length=oo, v=v) == -v
    assert mirror_formula(focal_length=oo, u=oo) is oo
    assert mirror_formula(focal_length=f, u=oo) == f
    assert mirror_formula(focal_length=oo, u=u) == -u
    raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))


def test_lens_formula():
    u, v, f = symbols('u, v, f')
    assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
    assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
    assert lens_formula(u=u, v=v) == u*v/(u - v)
    assert lens_formula(u=oo, v=v) == v
    assert lens_formula(u=oo, v=oo) is oo
    assert lens_formula(focal_length=oo, u=u) == u
    assert lens_formula(u=u, v=oo) == -u
    assert lens_formula(focal_length=oo, v=oo) is -oo
    assert lens_formula(focal_length=oo, v=v) == v
    assert lens_formula(focal_length=f, v=oo) == -f
    assert lens_formula(focal_length=oo, u=oo) is oo
    assert lens_formula(focal_length=oo, u=u) == u
    assert lens_formula(focal_length=f, u=oo) == f
    raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))


def test_hyperfocal_distance():
    f, N, c = symbols('f, N, c')
    assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
    assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2)


def test_transverse_magnification():
    si, so = symbols('si, so')
    assert transverse_magnification(si, so) == -si/so
    assert transverse_magnification(30, 15) == -2


def test_lens_makers_formula_thick_lens():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1', permittivity=e0, n=1)
    m2 = Medium('m2', permittivity=e0, n=1.33)
    assert ae(lens_makers_formula(m1, m2, 10, -10, d=1), -19.82, 2)
    assert lens_makers_formula(n1, n2, 1, -1, d=0.1) == n2/((2.0 - (0.1*n1 - 0.1*n2)/n1)*(n1 - n2))


def test_lens_makers_formula_plano_lens():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1', permittivity=e0, n=1)
    m2 = Medium('m2', permittivity=e0, n=1.33)
    assert ae(lens_makers_formula(m1, m2, 10, oo), -40.30, 2)
    assert lens_makers_formula(n1, n2, 10, oo) == 10.0*n2/(n1 - n2)