Spaces:
Running
Running
File size: 21,599 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
"""Geometry objects for use by wrapping pathways."""
from abc import ABC, abstractmethod
from sympy import Integer, acos, pi, sqrt, sympify, tan
from sympy.core.relational import Eq
from sympy.functions.elementary.trigonometric import atan2
from sympy.polys.polytools import cancel
from sympy.physics.vector import Vector, dot
from sympy.simplify.simplify import trigsimp
__all__ = [
'WrappingGeometryBase',
'WrappingCylinder',
'WrappingSphere',
]
class WrappingGeometryBase(ABC):
"""Abstract base class for all geometry classes to inherit from.
Notes
=====
Instances of this class cannot be directly instantiated by users. However,
it can be used to created custom geometry types through subclassing.
"""
@property
@abstractmethod
def point(cls):
"""The point with which the geometry is associated."""
pass
@abstractmethod
def point_on_surface(self, point):
"""Returns ``True`` if a point is on the geometry's surface.
Parameters
==========
point : Point
The point for which it's to be ascertained if it's on the
geometry's surface or not.
"""
pass
@abstractmethod
def geodesic_length(self, point_1, point_2):
"""Returns the shortest distance between two points on a geometry's
surface.
Parameters
==========
point_1 : Point
The point from which the geodesic length should be calculated.
point_2 : Point
The point to which the geodesic length should be calculated.
"""
pass
@abstractmethod
def geodesic_end_vectors(self, point_1, point_2):
"""The vectors parallel to the geodesic at the two end points.
Parameters
==========
point_1 : Point
The point from which the geodesic originates.
point_2 : Point
The point at which the geodesic terminates.
"""
pass
def __repr__(self):
"""Default representation of a geometry object."""
return f'{self.__class__.__name__}()'
class WrappingSphere(WrappingGeometryBase):
"""A solid spherical object.
Explanation
===========
A wrapping geometry that allows for circular arcs to be defined between
pairs of points. These paths are always geodetic (the shortest possible).
Examples
========
To create a ``WrappingSphere`` instance, a ``Symbol`` denoting its radius
and ``Point`` at which its center will be located are needed:
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Point, WrappingSphere
>>> r = symbols('r')
>>> pO = Point('pO')
A sphere with radius ``r`` centered on ``pO`` can be instantiated with:
>>> WrappingSphere(r, pO)
WrappingSphere(radius=r, point=pO)
Parameters
==========
radius : Symbol
Radius of the sphere. This symbol must represent a value that is
positive and constant, i.e. it cannot be a dynamic symbol, nor can it
be an expression.
point : Point
A point at which the sphere is centered.
See Also
========
WrappingCylinder: Cylindrical geometry where the wrapping direction can be
defined.
"""
def __init__(self, radius, point):
"""Initializer for ``WrappingSphere``.
Parameters
==========
radius : Symbol
The radius of the sphere.
point : Point
A point on which the sphere is centered.
"""
self.radius = radius
self.point = point
@property
def radius(self):
"""Radius of the sphere."""
return self._radius
@radius.setter
def radius(self, radius):
self._radius = radius
@property
def point(self):
"""A point on which the sphere is centered."""
return self._point
@point.setter
def point(self, point):
self._point = point
def point_on_surface(self, point):
"""Returns ``True`` if a point is on the sphere's surface.
Parameters
==========
point : Point
The point for which it's to be ascertained if it's on the sphere's
surface or not. This point's position relative to the sphere's
center must be a simple expression involving the radius of the
sphere, otherwise this check will likely not work.
"""
point_vector = point.pos_from(self.point)
if isinstance(point_vector, Vector):
point_radius_squared = dot(point_vector, point_vector)
else:
point_radius_squared = point_vector**2
return Eq(point_radius_squared, self.radius**2) == True
def geodesic_length(self, point_1, point_2):
r"""Returns the shortest distance between two points on the sphere's
surface.
Explanation
===========
The geodesic length, i.e. the shortest arc along the surface of a
sphere, connecting two points can be calculated using the formula:
.. math::
l = \arccos\left(\mathbf{v}_1 \cdot \mathbf{v}_2\right)
where $\mathbf{v}_1$ and $\mathbf{v}_2$ are the unit vectors from the
sphere's center to the first and second points on the sphere's surface
respectively. Note that the actual path that the geodesic will take is
undefined when the two points are directly opposite one another.
Examples
========
A geodesic length can only be calculated between two points on the
sphere's surface. Firstly, a ``WrappingSphere`` instance must be
created along with two points that will lie on its surface:
>>> from sympy import symbols
>>> from sympy.physics.mechanics import (Point, ReferenceFrame,
... WrappingSphere)
>>> N = ReferenceFrame('N')
>>> r = symbols('r')
>>> pO = Point('pO')
>>> pO.set_vel(N, 0)
>>> sphere = WrappingSphere(r, pO)
>>> p1 = Point('p1')
>>> p2 = Point('p2')
Let's assume that ``p1`` lies at a distance of ``r`` in the ``N.x``
direction from ``pO`` and that ``p2`` is located on the sphere's
surface in the ``N.y + N.z`` direction from ``pO``. These positions can
be set with:
>>> p1.set_pos(pO, r*N.x)
>>> p1.pos_from(pO)
r*N.x
>>> p2.set_pos(pO, r*(N.y + N.z).normalize())
>>> p2.pos_from(pO)
sqrt(2)*r/2*N.y + sqrt(2)*r/2*N.z
The geodesic length, which is in this case is a quarter of the sphere's
circumference, can be calculated using the ``geodesic_length`` method:
>>> sphere.geodesic_length(p1, p2)
pi*r/2
If the ``geodesic_length`` method is passed an argument, the ``Point``
that doesn't lie on the sphere's surface then a ``ValueError`` is
raised because it's not possible to calculate a value in this case.
Parameters
==========
point_1 : Point
Point from which the geodesic length should be calculated.
point_2 : Point
Point to which the geodesic length should be calculated.
"""
for point in (point_1, point_2):
if not self.point_on_surface(point):
msg = (
f'Geodesic length cannot be calculated as point {point} '
f'with radius {point.pos_from(self.point).magnitude()} '
f'from the sphere\'s center {self.point} does not lie on '
f'the surface of {self} with radius {self.radius}.'
)
raise ValueError(msg)
point_1_vector = point_1.pos_from(self.point).normalize()
point_2_vector = point_2.pos_from(self.point).normalize()
central_angle = acos(point_2_vector.dot(point_1_vector))
geodesic_length = self.radius*central_angle
return geodesic_length
def geodesic_end_vectors(self, point_1, point_2):
"""The vectors parallel to the geodesic at the two end points.
Parameters
==========
point_1 : Point
The point from which the geodesic originates.
point_2 : Point
The point at which the geodesic terminates.
"""
pA, pB = point_1, point_2
pO = self.point
pA_vec = pA.pos_from(pO)
pB_vec = pB.pos_from(pO)
if pA_vec.cross(pB_vec) == 0:
msg = (
f'Can\'t compute geodesic end vectors for the pair of points '
f'{pA} and {pB} on a sphere {self} as they are diametrically '
f'opposed, thus the geodesic is not defined.'
)
raise ValueError(msg)
return (
pA_vec.cross(pB.pos_from(pA)).cross(pA_vec).normalize(),
pB_vec.cross(pA.pos_from(pB)).cross(pB_vec).normalize(),
)
def __repr__(self):
"""Representation of a ``WrappingSphere``."""
return (
f'{self.__class__.__name__}(radius={self.radius}, '
f'point={self.point})'
)
class WrappingCylinder(WrappingGeometryBase):
"""A solid (infinite) cylindrical object.
Explanation
===========
A wrapping geometry that allows for circular arcs to be defined between
pairs of points. These paths are always geodetic (the shortest possible) in
the sense that they will be a straight line on the unwrapped cylinder's
surface. However, it is also possible for a direction to be specified, i.e.
paths can be influenced such that they either wrap along the shortest side
or the longest side of the cylinder. To define these directions, rotations
are in the positive direction following the right-hand rule.
Examples
========
To create a ``WrappingCylinder`` instance, a ``Symbol`` denoting its
radius, a ``Vector`` defining its axis, and a ``Point`` through which its
axis passes are needed:
>>> from sympy import symbols
>>> from sympy.physics.mechanics import (Point, ReferenceFrame,
... WrappingCylinder)
>>> N = ReferenceFrame('N')
>>> r = symbols('r')
>>> pO = Point('pO')
>>> ax = N.x
A cylinder with radius ``r``, and axis parallel to ``N.x`` passing through
``pO`` can be instantiated with:
>>> WrappingCylinder(r, pO, ax)
WrappingCylinder(radius=r, point=pO, axis=N.x)
Parameters
==========
radius : Symbol
The radius of the cylinder.
point : Point
A point through which the cylinder's axis passes.
axis : Vector
The axis along which the cylinder is aligned.
See Also
========
WrappingSphere: Spherical geometry where the wrapping direction is always
geodetic.
"""
def __init__(self, radius, point, axis):
"""Initializer for ``WrappingCylinder``.
Parameters
==========
radius : Symbol
The radius of the cylinder. This symbol must represent a value that
is positive and constant, i.e. it cannot be a dynamic symbol.
point : Point
A point through which the cylinder's axis passes.
axis : Vector
The axis along which the cylinder is aligned.
"""
self.radius = radius
self.point = point
self.axis = axis
@property
def radius(self):
"""Radius of the cylinder."""
return self._radius
@radius.setter
def radius(self, radius):
self._radius = radius
@property
def point(self):
"""A point through which the cylinder's axis passes."""
return self._point
@point.setter
def point(self, point):
self._point = point
@property
def axis(self):
"""Axis along which the cylinder is aligned."""
return self._axis
@axis.setter
def axis(self, axis):
self._axis = axis.normalize()
def point_on_surface(self, point):
"""Returns ``True`` if a point is on the cylinder's surface.
Parameters
==========
point : Point
The point for which it's to be ascertained if it's on the
cylinder's surface or not. This point's position relative to the
cylinder's axis must be a simple expression involving the radius of
the sphere, otherwise this check will likely not work.
"""
relative_position = point.pos_from(self.point)
parallel = relative_position.dot(self.axis) * self.axis
point_vector = relative_position - parallel
if isinstance(point_vector, Vector):
point_radius_squared = dot(point_vector, point_vector)
else:
point_radius_squared = point_vector**2
return Eq(trigsimp(point_radius_squared), self.radius**2) == True
def geodesic_length(self, point_1, point_2):
"""The shortest distance between two points on a geometry's surface.
Explanation
===========
The geodesic length, i.e. the shortest arc along the surface of a
cylinder, connecting two points. It can be calculated using Pythagoras'
theorem. The first short side is the distance between the two points on
the cylinder's surface parallel to the cylinder's axis. The second
short side is the arc of a circle between the two points of the
cylinder's surface perpendicular to the cylinder's axis. The resulting
hypotenuse is the geodesic length.
Examples
========
A geodesic length can only be calculated between two points on the
cylinder's surface. Firstly, a ``WrappingCylinder`` instance must be
created along with two points that will lie on its surface:
>>> from sympy import symbols, cos, sin
>>> from sympy.physics.mechanics import (Point, ReferenceFrame,
... WrappingCylinder, dynamicsymbols)
>>> N = ReferenceFrame('N')
>>> r = symbols('r')
>>> pO = Point('pO')
>>> pO.set_vel(N, 0)
>>> cylinder = WrappingCylinder(r, pO, N.x)
>>> p1 = Point('p1')
>>> p2 = Point('p2')
Let's assume that ``p1`` is located at ``N.x + r*N.y`` relative to
``pO`` and that ``p2`` is located at ``r*(cos(q)*N.y + sin(q)*N.z)``
relative to ``pO``, where ``q(t)`` is a generalized coordinate
specifying the angle rotated around the ``N.x`` axis according to the
right-hand rule where ``N.y`` is zero. These positions can be set with:
>>> q = dynamicsymbols('q')
>>> p1.set_pos(pO, N.x + r*N.y)
>>> p1.pos_from(pO)
N.x + r*N.y
>>> p2.set_pos(pO, r*(cos(q)*N.y + sin(q)*N.z).normalize())
>>> p2.pos_from(pO).simplify()
r*cos(q(t))*N.y + r*sin(q(t))*N.z
The geodesic length, which is in this case a is the hypotenuse of a
right triangle where the other two side lengths are ``1`` (parallel to
the cylinder's axis) and ``r*q(t)`` (parallel to the cylinder's cross
section), can be calculated using the ``geodesic_length`` method:
>>> cylinder.geodesic_length(p1, p2).simplify()
sqrt(r**2*q(t)**2 + 1)
If the ``geodesic_length`` method is passed an argument ``Point`` that
doesn't lie on the sphere's surface then a ``ValueError`` is raised
because it's not possible to calculate a value in this case.
Parameters
==========
point_1 : Point
Point from which the geodesic length should be calculated.
point_2 : Point
Point to which the geodesic length should be calculated.
"""
for point in (point_1, point_2):
if not self.point_on_surface(point):
msg = (
f'Geodesic length cannot be calculated as point {point} '
f'with radius {point.pos_from(self.point).magnitude()} '
f'from the cylinder\'s center {self.point} does not lie on '
f'the surface of {self} with radius {self.radius} and axis '
f'{self.axis}.'
)
raise ValueError(msg)
relative_position = point_2.pos_from(point_1)
parallel_length = relative_position.dot(self.axis)
point_1_relative_position = point_1.pos_from(self.point)
point_1_perpendicular_vector = (
point_1_relative_position
- point_1_relative_position.dot(self.axis)*self.axis
).normalize()
point_2_relative_position = point_2.pos_from(self.point)
point_2_perpendicular_vector = (
point_2_relative_position
- point_2_relative_position.dot(self.axis)*self.axis
).normalize()
central_angle = _directional_atan(
cancel(point_1_perpendicular_vector
.cross(point_2_perpendicular_vector)
.dot(self.axis)),
cancel(point_1_perpendicular_vector.dot(point_2_perpendicular_vector)),
)
planar_arc_length = self.radius*central_angle
geodesic_length = sqrt(parallel_length**2 + planar_arc_length**2)
return geodesic_length
def geodesic_end_vectors(self, point_1, point_2):
"""The vectors parallel to the geodesic at the two end points.
Parameters
==========
point_1 : Point
The point from which the geodesic originates.
point_2 : Point
The point at which the geodesic terminates.
"""
point_1_from_origin_point = point_1.pos_from(self.point)
point_2_from_origin_point = point_2.pos_from(self.point)
if point_1_from_origin_point == point_2_from_origin_point:
msg = (
f'Cannot compute geodesic end vectors for coincident points '
f'{point_1} and {point_2} as no geodesic exists.'
)
raise ValueError(msg)
point_1_parallel = point_1_from_origin_point.dot(self.axis) * self.axis
point_2_parallel = point_2_from_origin_point.dot(self.axis) * self.axis
point_1_normal = (point_1_from_origin_point - point_1_parallel)
point_2_normal = (point_2_from_origin_point - point_2_parallel)
if point_1_normal == point_2_normal:
point_1_perpendicular = Vector(0)
point_2_perpendicular = Vector(0)
else:
point_1_perpendicular = self.axis.cross(point_1_normal).normalize()
point_2_perpendicular = -self.axis.cross(point_2_normal).normalize()
geodesic_length = self.geodesic_length(point_1, point_2)
relative_position = point_2.pos_from(point_1)
parallel_length = relative_position.dot(self.axis)
planar_arc_length = sqrt(geodesic_length**2 - parallel_length**2)
point_1_vector = (
planar_arc_length * point_1_perpendicular
+ parallel_length * self.axis
).normalize()
point_2_vector = (
planar_arc_length * point_2_perpendicular
- parallel_length * self.axis
).normalize()
return (point_1_vector, point_2_vector)
def __repr__(self):
"""Representation of a ``WrappingCylinder``."""
return (
f'{self.__class__.__name__}(radius={self.radius}, '
f'point={self.point}, axis={self.axis})'
)
def _directional_atan(numerator, denominator):
"""Compute atan in a directional sense as required for geodesics.
Explanation
===========
To be able to control the direction of the geodesic length along the
surface of a cylinder a dedicated arctangent function is needed that
properly handles the directionality of different case. This function
ensures that the central angle is always positive but shifting the case
where ``atan2`` would return a negative angle to be centered around
``2*pi``.
Notes
=====
This function only handles very specific cases, i.e. the ones that are
expected to be encountered when calculating symbolic geodesics on uniformly
curved surfaces. As such, ``NotImplemented`` errors can be raised in many
cases. This function is named with a leader underscore to indicate that it
only aims to provide very specific functionality within the private scope
of this module.
"""
if numerator.is_number and denominator.is_number:
angle = atan2(numerator, denominator)
if angle < 0:
angle += 2 * pi
elif numerator.is_number:
msg = (
f'Cannot compute a directional atan when the numerator {numerator} '
f'is numeric and the denominator {denominator} is symbolic.'
)
raise NotImplementedError(msg)
elif denominator.is_number:
msg = (
f'Cannot compute a directional atan when the numerator {numerator} '
f'is symbolic and the denominator {denominator} is numeric.'
)
raise NotImplementedError(msg)
else:
ratio = sympify(trigsimp(numerator / denominator))
if isinstance(ratio, tan):
angle = ratio.args[0]
elif (
ratio.is_Mul
and ratio.args[0] == Integer(-1)
and isinstance(ratio.args[1], tan)
):
angle = 2 * pi - ratio.args[1].args[0]
else:
msg = f'Cannot compute a directional atan for the value {ratio}.'
raise NotImplementedError(msg)
return angle
|