File size: 21,599 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
"""Geometry objects for use by wrapping pathways."""

from abc import ABC, abstractmethod

from sympy import Integer, acos, pi, sqrt, sympify, tan
from sympy.core.relational import Eq
from sympy.functions.elementary.trigonometric import atan2
from sympy.polys.polytools import cancel
from sympy.physics.vector import Vector, dot
from sympy.simplify.simplify import trigsimp


__all__ = [
    'WrappingGeometryBase',
    'WrappingCylinder',
    'WrappingSphere',
]


class WrappingGeometryBase(ABC):
    """Abstract base class for all geometry classes to inherit from.

    Notes
    =====

    Instances of this class cannot be directly instantiated by users. However,
    it can be used to created custom geometry types through subclassing.

    """

    @property
    @abstractmethod
    def point(cls):
        """The point with which the geometry is associated."""
        pass

    @abstractmethod
    def point_on_surface(self, point):
        """Returns ``True`` if a point is on the geometry's surface.

        Parameters
        ==========
        point : Point
            The point for which it's to be ascertained if it's on the
            geometry's surface or not.

        """
        pass

    @abstractmethod
    def geodesic_length(self, point_1, point_2):
        """Returns the shortest distance between two points on a geometry's
        surface.

        Parameters
        ==========

        point_1 : Point
            The point from which the geodesic length should be calculated.
        point_2 : Point
            The point to which the geodesic length should be calculated.

        """
        pass

    @abstractmethod
    def geodesic_end_vectors(self, point_1, point_2):
        """The vectors parallel to the geodesic at the two end points.

        Parameters
        ==========

        point_1 : Point
            The point from which the geodesic originates.
        point_2 : Point
            The point at which the geodesic terminates.

        """
        pass

    def __repr__(self):
        """Default representation of a geometry object."""
        return f'{self.__class__.__name__}()'


class WrappingSphere(WrappingGeometryBase):
    """A solid spherical object.

    Explanation
    ===========

    A wrapping geometry that allows for circular arcs to be defined between
    pairs of points. These paths are always geodetic (the shortest possible).

    Examples
    ========

    To create a ``WrappingSphere`` instance, a ``Symbol`` denoting its radius
    and ``Point`` at which its center will be located are needed:

    >>> from sympy import symbols
    >>> from sympy.physics.mechanics import Point, WrappingSphere
    >>> r = symbols('r')
    >>> pO = Point('pO')

    A sphere with radius ``r`` centered on ``pO`` can be instantiated with:

    >>> WrappingSphere(r, pO)
    WrappingSphere(radius=r, point=pO)

    Parameters
    ==========

    radius : Symbol
        Radius of the sphere. This symbol must represent a value that is
        positive and constant, i.e. it cannot be a dynamic symbol, nor can it
        be an expression.
    point : Point
        A point at which the sphere is centered.

    See Also
    ========

    WrappingCylinder: Cylindrical geometry where the wrapping direction can be
        defined.

    """

    def __init__(self, radius, point):
        """Initializer for ``WrappingSphere``.

        Parameters
        ==========

        radius : Symbol
            The radius of the sphere.
        point : Point
            A point on which the sphere is centered.

        """
        self.radius = radius
        self.point = point

    @property
    def radius(self):
        """Radius of the sphere."""
        return self._radius

    @radius.setter
    def radius(self, radius):
        self._radius = radius

    @property
    def point(self):
        """A point on which the sphere is centered."""
        return self._point

    @point.setter
    def point(self, point):
        self._point = point

    def point_on_surface(self, point):
        """Returns ``True`` if a point is on the sphere's surface.

        Parameters
        ==========

        point : Point
            The point for which it's to be ascertained if it's on the sphere's
            surface or not. This point's position relative to the sphere's
            center must be a simple expression involving the radius of the
            sphere, otherwise this check will likely not work.

        """
        point_vector = point.pos_from(self.point)
        if isinstance(point_vector, Vector):
            point_radius_squared = dot(point_vector, point_vector)
        else:
            point_radius_squared = point_vector**2
        return Eq(point_radius_squared, self.radius**2) == True

    def geodesic_length(self, point_1, point_2):
        r"""Returns the shortest distance between two points on the sphere's
        surface.

        Explanation
        ===========

        The geodesic length, i.e. the shortest arc along the surface of a
        sphere, connecting two points can be calculated using the formula:

        .. math::

           l = \arccos\left(\mathbf{v}_1 \cdot \mathbf{v}_2\right)

        where $\mathbf{v}_1$ and $\mathbf{v}_2$ are the unit vectors from the
        sphere's center to the first and second points on the sphere's surface
        respectively. Note that the actual path that the geodesic will take is
        undefined when the two points are directly opposite one another.

        Examples
        ========

        A geodesic length can only be calculated between two points on the
        sphere's surface. Firstly, a ``WrappingSphere`` instance must be
        created along with two points that will lie on its surface:

        >>> from sympy import symbols
        >>> from sympy.physics.mechanics import (Point, ReferenceFrame,
        ...     WrappingSphere)
        >>> N = ReferenceFrame('N')
        >>> r = symbols('r')
        >>> pO = Point('pO')
        >>> pO.set_vel(N, 0)
        >>> sphere = WrappingSphere(r, pO)
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')

        Let's assume that ``p1`` lies at a distance of ``r`` in the ``N.x``
        direction from ``pO`` and that ``p2`` is located on the sphere's
        surface in the ``N.y + N.z`` direction from ``pO``. These positions can
        be set with:

        >>> p1.set_pos(pO, r*N.x)
        >>> p1.pos_from(pO)
        r*N.x
        >>> p2.set_pos(pO, r*(N.y + N.z).normalize())
        >>> p2.pos_from(pO)
        sqrt(2)*r/2*N.y + sqrt(2)*r/2*N.z

        The geodesic length, which is in this case is a quarter of the sphere's
        circumference, can be calculated using the ``geodesic_length`` method:

        >>> sphere.geodesic_length(p1, p2)
        pi*r/2

        If the ``geodesic_length`` method is passed an argument, the ``Point``
        that doesn't lie on the sphere's surface then a ``ValueError`` is
        raised because it's not possible to calculate a value in this case.

        Parameters
        ==========

        point_1 : Point
            Point from which the geodesic length should be calculated.
        point_2 : Point
            Point to which the geodesic length should be calculated.

        """
        for point in (point_1, point_2):
            if not self.point_on_surface(point):
                msg = (
                    f'Geodesic length cannot be calculated as point {point} '
                    f'with radius {point.pos_from(self.point).magnitude()} '
                    f'from the sphere\'s center {self.point} does not lie on '
                    f'the surface of {self} with radius {self.radius}.'
                )
                raise ValueError(msg)
        point_1_vector = point_1.pos_from(self.point).normalize()
        point_2_vector = point_2.pos_from(self.point).normalize()
        central_angle = acos(point_2_vector.dot(point_1_vector))
        geodesic_length = self.radius*central_angle
        return geodesic_length

    def geodesic_end_vectors(self, point_1, point_2):
        """The vectors parallel to the geodesic at the two end points.

        Parameters
        ==========

        point_1 : Point
            The point from which the geodesic originates.
        point_2 : Point
            The point at which the geodesic terminates.

        """
        pA, pB = point_1, point_2
        pO = self.point
        pA_vec = pA.pos_from(pO)
        pB_vec = pB.pos_from(pO)

        if pA_vec.cross(pB_vec) == 0:
            msg = (
                f'Can\'t compute geodesic end vectors for the pair of points '
                f'{pA} and {pB} on a sphere {self} as they are diametrically '
                f'opposed, thus the geodesic is not defined.'
            )
            raise ValueError(msg)

        return (
            pA_vec.cross(pB.pos_from(pA)).cross(pA_vec).normalize(),
            pB_vec.cross(pA.pos_from(pB)).cross(pB_vec).normalize(),
        )

    def __repr__(self):
        """Representation of a ``WrappingSphere``."""
        return (
            f'{self.__class__.__name__}(radius={self.radius}, '
            f'point={self.point})'
        )


class WrappingCylinder(WrappingGeometryBase):
    """A solid (infinite) cylindrical object.

    Explanation
    ===========

    A wrapping geometry that allows for circular arcs to be defined between
    pairs of points. These paths are always geodetic (the shortest possible) in
    the sense that they will be a straight line on the unwrapped cylinder's
    surface. However, it is also possible for a direction to be specified, i.e.
    paths can be influenced such that they either wrap along the shortest side
    or the longest side of the cylinder. To define these directions, rotations
    are in the positive direction following the right-hand rule.

    Examples
    ========

    To create a ``WrappingCylinder`` instance, a ``Symbol`` denoting its
    radius, a ``Vector`` defining its axis, and a ``Point`` through which its
    axis passes are needed:

    >>> from sympy import symbols
    >>> from sympy.physics.mechanics import (Point, ReferenceFrame,
    ...     WrappingCylinder)
    >>> N = ReferenceFrame('N')
    >>> r = symbols('r')
    >>> pO = Point('pO')
    >>> ax = N.x

    A cylinder with radius ``r``, and axis parallel to ``N.x`` passing through
    ``pO`` can be instantiated with:

    >>> WrappingCylinder(r, pO, ax)
    WrappingCylinder(radius=r, point=pO, axis=N.x)

    Parameters
    ==========

    radius : Symbol
        The radius of the cylinder.
    point : Point
        A point through which the cylinder's axis passes.
    axis : Vector
        The axis along which the cylinder is aligned.

    See Also
    ========

    WrappingSphere: Spherical geometry where the wrapping direction is always
        geodetic.

    """

    def __init__(self, radius, point, axis):
        """Initializer for ``WrappingCylinder``.

        Parameters
        ==========

        radius : Symbol
            The radius of the cylinder. This symbol must represent a value that
            is positive and constant, i.e. it cannot be a dynamic symbol.
        point : Point
            A point through which the cylinder's axis passes.
        axis : Vector
            The axis along which the cylinder is aligned.

        """
        self.radius = radius
        self.point = point
        self.axis = axis

    @property
    def radius(self):
        """Radius of the cylinder."""
        return self._radius

    @radius.setter
    def radius(self, radius):
        self._radius = radius

    @property
    def point(self):
        """A point through which the cylinder's axis passes."""
        return self._point

    @point.setter
    def point(self, point):
        self._point = point

    @property
    def axis(self):
        """Axis along which the cylinder is aligned."""
        return self._axis

    @axis.setter
    def axis(self, axis):
        self._axis = axis.normalize()

    def point_on_surface(self, point):
        """Returns ``True`` if a point is on the cylinder's surface.

        Parameters
        ==========

        point : Point
            The point for which it's to be ascertained if it's on the
            cylinder's surface or not. This point's position relative to the
            cylinder's axis must be a simple expression involving the radius of
            the sphere, otherwise this check will likely not work.

        """
        relative_position = point.pos_from(self.point)
        parallel = relative_position.dot(self.axis) * self.axis
        point_vector = relative_position - parallel
        if isinstance(point_vector, Vector):
            point_radius_squared = dot(point_vector, point_vector)
        else:
            point_radius_squared = point_vector**2
        return Eq(trigsimp(point_radius_squared), self.radius**2) == True

    def geodesic_length(self, point_1, point_2):
        """The shortest distance between two points on a geometry's surface.

        Explanation
        ===========

        The geodesic length, i.e. the shortest arc along the surface of a
        cylinder, connecting two points. It can be calculated using Pythagoras'
        theorem. The first short side is the distance between the two points on
        the cylinder's surface parallel to the cylinder's axis. The second
        short side is the arc of a circle between the two points of the
        cylinder's surface perpendicular to the cylinder's axis. The resulting
        hypotenuse is the geodesic length.

        Examples
        ========

        A geodesic length can only be calculated between two points on the
        cylinder's surface. Firstly, a ``WrappingCylinder`` instance must be
        created along with two points that will lie on its surface:

        >>> from sympy import symbols, cos, sin
        >>> from sympy.physics.mechanics import (Point, ReferenceFrame,
        ...     WrappingCylinder, dynamicsymbols)
        >>> N = ReferenceFrame('N')
        >>> r = symbols('r')
        >>> pO = Point('pO')
        >>> pO.set_vel(N, 0)
        >>> cylinder = WrappingCylinder(r, pO, N.x)
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')

        Let's assume that ``p1`` is located at ``N.x + r*N.y`` relative to
        ``pO`` and that ``p2`` is located at ``r*(cos(q)*N.y + sin(q)*N.z)``
        relative to ``pO``, where ``q(t)`` is a generalized coordinate
        specifying the angle rotated around the ``N.x`` axis according to the
        right-hand rule where ``N.y`` is zero. These positions can be set with:

        >>> q = dynamicsymbols('q')
        >>> p1.set_pos(pO, N.x + r*N.y)
        >>> p1.pos_from(pO)
        N.x + r*N.y
        >>> p2.set_pos(pO, r*(cos(q)*N.y + sin(q)*N.z).normalize())
        >>> p2.pos_from(pO).simplify()
        r*cos(q(t))*N.y + r*sin(q(t))*N.z

        The geodesic length, which is in this case a is the hypotenuse of a
        right triangle where the other two side lengths are ``1`` (parallel to
        the cylinder's axis) and ``r*q(t)`` (parallel to the cylinder's cross
        section), can be calculated using the ``geodesic_length`` method:

        >>> cylinder.geodesic_length(p1, p2).simplify()
        sqrt(r**2*q(t)**2 + 1)

        If the ``geodesic_length`` method is passed an argument ``Point`` that
        doesn't lie on the sphere's surface then a ``ValueError`` is raised
        because it's not possible to calculate a value in this case.

        Parameters
        ==========

        point_1 : Point
            Point from which the geodesic length should be calculated.
        point_2 : Point
            Point to which the geodesic length should be calculated.

        """
        for point in (point_1, point_2):
            if not self.point_on_surface(point):
                msg = (
                    f'Geodesic length cannot be calculated as point {point} '
                    f'with radius {point.pos_from(self.point).magnitude()} '
                    f'from the cylinder\'s center {self.point} does not lie on '
                    f'the surface of {self} with radius {self.radius} and axis '
                    f'{self.axis}.'
                )
                raise ValueError(msg)

        relative_position = point_2.pos_from(point_1)
        parallel_length = relative_position.dot(self.axis)

        point_1_relative_position = point_1.pos_from(self.point)
        point_1_perpendicular_vector = (
            point_1_relative_position
            - point_1_relative_position.dot(self.axis)*self.axis
        ).normalize()

        point_2_relative_position = point_2.pos_from(self.point)
        point_2_perpendicular_vector = (
            point_2_relative_position
            - point_2_relative_position.dot(self.axis)*self.axis
        ).normalize()

        central_angle = _directional_atan(
            cancel(point_1_perpendicular_vector
                .cross(point_2_perpendicular_vector)
                .dot(self.axis)),
            cancel(point_1_perpendicular_vector.dot(point_2_perpendicular_vector)),
        )

        planar_arc_length = self.radius*central_angle
        geodesic_length = sqrt(parallel_length**2 + planar_arc_length**2)
        return geodesic_length

    def geodesic_end_vectors(self, point_1, point_2):
        """The vectors parallel to the geodesic at the two end points.

        Parameters
        ==========

        point_1 : Point
            The point from which the geodesic originates.
        point_2 : Point
            The point at which the geodesic terminates.

        """
        point_1_from_origin_point = point_1.pos_from(self.point)
        point_2_from_origin_point = point_2.pos_from(self.point)

        if point_1_from_origin_point == point_2_from_origin_point:
            msg = (
                f'Cannot compute geodesic end vectors for coincident points '
                f'{point_1} and {point_2} as no geodesic exists.'
            )
            raise ValueError(msg)

        point_1_parallel = point_1_from_origin_point.dot(self.axis) * self.axis
        point_2_parallel = point_2_from_origin_point.dot(self.axis) * self.axis
        point_1_normal = (point_1_from_origin_point - point_1_parallel)
        point_2_normal = (point_2_from_origin_point - point_2_parallel)

        if point_1_normal == point_2_normal:
            point_1_perpendicular = Vector(0)
            point_2_perpendicular = Vector(0)
        else:
            point_1_perpendicular = self.axis.cross(point_1_normal).normalize()
            point_2_perpendicular = -self.axis.cross(point_2_normal).normalize()

        geodesic_length = self.geodesic_length(point_1, point_2)
        relative_position = point_2.pos_from(point_1)
        parallel_length = relative_position.dot(self.axis)
        planar_arc_length = sqrt(geodesic_length**2 - parallel_length**2)

        point_1_vector = (
            planar_arc_length * point_1_perpendicular
            + parallel_length * self.axis
        ).normalize()
        point_2_vector = (
            planar_arc_length * point_2_perpendicular
            - parallel_length * self.axis
        ).normalize()

        return (point_1_vector, point_2_vector)

    def __repr__(self):
        """Representation of a ``WrappingCylinder``."""
        return (
            f'{self.__class__.__name__}(radius={self.radius}, '
            f'point={self.point}, axis={self.axis})'
        )


def _directional_atan(numerator, denominator):
    """Compute atan in a directional sense as required for geodesics.

    Explanation
    ===========

    To be able to control the direction of the geodesic length along the
    surface of a cylinder a dedicated arctangent function is needed that
    properly handles the directionality of different case. This function
    ensures that the central angle is always positive but shifting the case
    where ``atan2`` would return a negative angle to be centered around
    ``2*pi``.

    Notes
    =====

    This function only handles very specific cases, i.e. the ones that are
    expected to be encountered when calculating symbolic geodesics on uniformly
    curved surfaces. As such, ``NotImplemented`` errors can be raised in many
    cases. This function is named with a leader underscore to indicate that it
    only aims to provide very specific functionality within the private scope
    of this module.

    """

    if numerator.is_number and denominator.is_number:
        angle = atan2(numerator, denominator)
        if angle < 0:
            angle += 2 * pi
    elif numerator.is_number:
        msg = (
            f'Cannot compute a directional atan when the numerator {numerator} '
            f'is numeric and the denominator {denominator} is symbolic.'
        )
        raise NotImplementedError(msg)
    elif denominator.is_number:
        msg = (
            f'Cannot compute a directional atan when the numerator {numerator} '
            f'is symbolic and the denominator {denominator} is numeric.'
        )
        raise NotImplementedError(msg)
    else:
        ratio = sympify(trigsimp(numerator / denominator))
        if isinstance(ratio, tan):
            angle = ratio.args[0]
        elif (
            ratio.is_Mul
            and ratio.args[0] == Integer(-1)
            and isinstance(ratio.args[1], tan)
        ):
            angle = 2 * pi - ratio.args[1].args[0]
        else:
            msg = f'Cannot compute a directional atan for the value {ratio}.'
            raise NotImplementedError(msg)

    return angle