File size: 6,188 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody
from sympy.physics.mechanics import dynamicsymbols, outer, inertia, Inertia
from sympy.physics.mechanics import inertia_of_point_mass
from sympy import expand, zeros, simplify, symbols
from sympy.testing.pytest import raises, warns_deprecated_sympy


def test_rigidbody_default():
    # Test default
    b = RigidBody('B')
    I = inertia(b.frame, *symbols('B_ixx B_iyy B_izz B_ixy B_iyz B_izx'))
    assert b.name == 'B'
    assert b.mass == symbols('B_mass')
    assert b.masscenter.name == 'B_masscenter'
    assert b.inertia == (I, b.masscenter)
    assert b.central_inertia == I
    assert b.frame.name == 'B_frame'
    assert b.__str__() == 'B'
    assert b.__repr__() == (
        "RigidBody('B', masscenter=B_masscenter, frame=B_frame, mass=B_mass, "
        "inertia=Inertia(dyadic=B_ixx*(B_frame.x|B_frame.x) + "
        "B_ixy*(B_frame.x|B_frame.y) + B_izx*(B_frame.x|B_frame.z) + "
        "B_ixy*(B_frame.y|B_frame.x) + B_iyy*(B_frame.y|B_frame.y) + "
        "B_iyz*(B_frame.y|B_frame.z) + B_izx*(B_frame.z|B_frame.x) + "
        "B_iyz*(B_frame.z|B_frame.y) + B_izz*(B_frame.z|B_frame.z), "
        "point=B_masscenter))")


def test_rigidbody():
    m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega')
    A = ReferenceFrame('A')
    A2 = ReferenceFrame('A2')
    P = Point('P')
    P2 = Point('P2')
    I = Dyadic(0)
    I2 = Dyadic(0)
    B = RigidBody('B', P, A, m, (I, P))
    assert B.mass == m
    assert B.frame == A
    assert B.masscenter == P
    assert B.inertia == (I, B.masscenter)

    B.mass = m2
    B.frame = A2
    B.masscenter = P2
    B.inertia = (I2, B.masscenter)
    raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P)))
    raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P)))
    raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P)))
    raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I)))
    assert B.__str__() == 'B'
    assert B.mass == m2
    assert B.frame == A2
    assert B.masscenter == P2
    assert B.inertia == (I2, B.masscenter)
    assert isinstance(B.inertia, Inertia)

    # Testing linear momentum function assuming A2 is the inertial frame
    N = ReferenceFrame('N')
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)


def test_rigidbody2():
    M, v, r, omega, g, h = dynamicsymbols('M v r omega g h')
    N = ReferenceFrame('N')
    b = ReferenceFrame('b')
    b.set_ang_vel(N, omega * b.x)
    P = Point('P')
    I = outer(b.x, b.x)
    Inertia_tuple = (I, P)
    B = RigidBody('B', P, b, M, Inertia_tuple)
    P.set_vel(N, v * b.x)
    assert B.angular_momentum(P, N) == omega * b.x
    O = Point('O')
    O.set_vel(N, v * b.x)
    P.set_pos(O, r * b.y)
    assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z
    B.potential_energy = M * g * h
    assert B.potential_energy == M * g * h
    assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2


def test_rigidbody3():
    q1, q2, q3, q4 = dynamicsymbols('q1:5')
    p1, p2, p3 = symbols('p1:4')
    m = symbols('m')

    A = ReferenceFrame('A')
    B = A.orientnew('B', 'axis', [q1, A.x])
    O = Point('O')
    O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
    P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
    P.v2pt_theory(O, A, B)
    I = outer(B.x, B.x)

    rb1 = RigidBody('rb1', P, B, m, (I, P))
    # I_S/O = I_S/S* + I_S*/O
    rb2 = RigidBody('rb2', P, B, m,
                    (I + inertia_of_point_mass(m, P.pos_from(O), B), O))

    assert rb1.central_inertia == rb2.central_inertia
    assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)


def test_pendulum_angular_momentum():
    """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
    center of mass G (OG = a) which turn around (O,z). The angle between the
    reference frame R and the rod is q.  The inertia of the body is I =
    (G,0,ma^2/3,ma^2/3). """

    m, a = symbols('m, a')
    q = dynamicsymbols('q')

    R = ReferenceFrame('R')
    R1 = R.orientnew('R1', 'Axis', [q, R.z])
    R1.set_ang_vel(R, q.diff() * R.z)

    I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)

    O = Point('O')

    A = O.locatenew('A', 2*a * R1.x)
    G = O.locatenew('G', a * R1.x)

    S = RigidBody('S', G, R1, m, (I, G))

    O.set_vel(R, 0)
    A.v2pt_theory(O, R, R1)
    G.v2pt_theory(O, R, R1)

    assert (4 * m * a**2 / 3 * q.diff() * R.z -
            S.angular_momentum(O, R).express(R)) == 0


def test_rigidbody_inertia():
    N = ReferenceFrame('N')
    m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
    Io = inertia(N, Ix, Iy, Iz)
    o = Point('o')
    p = o.locatenew('p', a * N.x + b * N.y)
    R = RigidBody('R', o, N, m, (Io, p))
    I_check = inertia(N, Ix - b ** 2 * m, Iy - a ** 2 * m,
                      Iz - m * (a ** 2 + b ** 2), m * a * b)
    assert isinstance(R.inertia, Inertia)
    assert R.inertia == (Io, p)
    assert R.central_inertia == I_check
    R.central_inertia = Io
    assert R.inertia == (Io, o)
    assert R.central_inertia == Io
    R.inertia = (Io, p)
    assert R.inertia == (Io, p)
    assert R.central_inertia == I_check
    # parse Inertia object
    R.inertia = Inertia(Io, o)
    assert R.inertia == (Io, o)


def test_parallel_axis():
    N = ReferenceFrame('N')
    m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
    Io = inertia(N, Ix, Iy, Iz)
    o = Point('o')
    p = o.locatenew('p', a * N.x + b * N.y)
    R = RigidBody('R', o, N, m, (Io, o))
    Ip = R.parallel_axis(p)
    Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
                          Iz + m * (a**2 + b**2), ixy=-m * a * b)
    assert Ip == Ip_expected
    # Reference frame from which the parallel axis is viewed should not matter
    A = ReferenceFrame('A')
    A.orient_axis(N, N.z, 1)
    assert simplify(
        (R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)


def test_deprecated_set_potential_energy():
    m, g, h = symbols('m g h')
    A = ReferenceFrame('A')
    P = Point('P')
    I = Dyadic(0)
    B = RigidBody('B', P, A, m, (I, P))
    with warns_deprecated_sympy():
        B.set_potential_energy(m*g*h)