Spaces:
Running
Running
File size: 19,256 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
from sympy import cos, Matrix, sin, zeros, tan, pi, symbols
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.solvers.solvers import solve
from sympy.physics.mechanics import (cross, dot, dynamicsymbols,
find_dynamicsymbols, KanesMethod, inertia,
inertia_of_point_mass, Point,
ReferenceFrame, RigidBody)
def test_aux_dep():
# This test is about rolling disc dynamics, comparing the results found
# with KanesMethod to those found when deriving the equations "manually"
# with SymPy.
# The terms Fr, Fr*, and Fr*_steady are all compared between the two
# methods. Here, Fr*_steady refers to the generalized inertia forces for an
# equilibrium configuration.
# Note: comparing to the test of test_rolling_disc() in test_kane.py, this
# test also tests auxiliary speeds and configuration and motion constraints
#, seen in the generalized dependent coordinates q[3], and depend speeds
# u[3], u[4] and u[5].
# First, manual derivation of Fr, Fr_star, Fr_star_steady.
# Symbols for time and constant parameters.
# Symbols for contact forces: Fx, Fy, Fz.
t, r, m, g, I, J = symbols('t r m g I J')
Fx, Fy, Fz = symbols('Fx Fy Fz')
# Configuration variables and their time derivatives:
# q[0] -- yaw
# q[1] -- lean
# q[2] -- spin
# q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in
# A.z direction
# Generalized speeds and their time derivatives:
# u[0] -- disc angular velocity component, disc fixed x direction
# u[1] -- disc angular velocity component, disc fixed y direction
# u[2] -- disc angular velocity component, disc fixed z direction
# u[3] -- disc velocity component, A.x direction
# u[4] -- disc velocity component, A.y direction
# u[5] -- disc velocity component, A.z direction
# Auxiliary generalized speeds:
# ua[0] -- contact point auxiliary generalized speed, A.x direction
# ua[1] -- contact point auxiliary generalized speed, A.y direction
# ua[2] -- contact point auxiliary generalized speed, A.z direction
q = dynamicsymbols('q:4')
qd = [qi.diff(t) for qi in q]
u = dynamicsymbols('u:6')
ud = [ui.diff(t) for ui in u]
ud_zero = dict(zip(ud, [0.]*len(ud)))
ua = dynamicsymbols('ua:3')
ua_zero = dict(zip(ua, [0.]*len(ua))) # noqa:F841
# Reference frames:
# Yaw intermediate frame: A.
# Lean intermediate frame: B.
# Disc fixed frame: C.
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q[0], N.z])
B = A.orientnew('B', 'Axis', [q[1], A.x])
C = B.orientnew('C', 'Axis', [q[2], B.y])
# Angular velocity and angular acceleration of disc fixed frame
# u[0], u[1] and u[2] are generalized independent speeds.
C.set_ang_vel(N, u[0]*B.x + u[1]*B.y + u[2]*B.z)
C.set_ang_acc(N, C.ang_vel_in(N).diff(t, B)
+ cross(B.ang_vel_in(N), C.ang_vel_in(N)))
# Velocity and acceleration of points:
# Disc-ground contact point: P.
# Center of disc: O, defined from point P with depend coordinate: q[3]
# u[3], u[4] and u[5] are generalized dependent speeds.
P = Point('P')
P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z)
O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y)
O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z)
O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N)))
# Kinematic differential equations:
# Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates
# directions of B, for qd0, qd1 and qd2.
# the other is v_o_n_qd = O.vel(N) in A.z direction for qd3.
# Then, solve for dq/dt's in terms of u's: qd_kd.
w_c_n_qd = qd[0]*A.z + qd[1]*B.x + qd[2]*B.y
v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P))
kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
[dot(v_o_n_qd - O.vel(N), A.z)])
qd_kd = solve(kindiffs, qd) # noqa:F841
# Values of generalized speeds during a steady turn for later substitution
# into the Fr_star_steady.
steady_conditions = solve(kindiffs.subs({qd[1] : 0, qd[3] : 0}), u)
steady_conditions.update({qd[1] : 0, qd[3] : 0})
# Partial angular velocities and velocities.
partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua]
partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua]
partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua]
# Configuration constraint: f_c, the projection of radius r in A.z direction
# is q[3].
# Velocity constraints: f_v, for u3, u4 and u5.
# Acceleration constraints: f_a.
f_c = Matrix([dot(-r*B.z, A.z) - q[3]])
f_v = Matrix([dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N),
O.pos_from(P))), ai).expand() for ai in A])
v_o_n = cross(C.ang_vel_in(N), O.pos_from(P))
a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n)
f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A]) # noqa:F841
# Solve for constraint equations in the form of
# u_dependent = A_rs * [u_i; u_aux].
# First, obtain constraint coefficient matrix: M_v * [u; ua] = 0;
# Second, taking u[0], u[1], u[2] as independent,
# taking u[3], u[4], u[5] as dependent,
# rearranging the matrix of M_v to be A_rs for u_dependent.
# Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict.
M_v = zeros(3, 9)
for i in range(3):
for j, ui in enumerate(u + ua):
M_v[i, j] = f_v[i].diff(ui)
M_v_i = M_v[:, :3]
M_v_d = M_v[:, 3:6]
M_v_aux = M_v[:, 6:]
M_v_i_aux = M_v_i.row_join(M_v_aux)
A_rs = - M_v_d.inv() * M_v_i_aux
u_dep = A_rs[:, :3] * Matrix(u[:3])
u_dep_dict = dict(zip(u[3:], u_dep))
# Active forces: F_O acting on point O; F_P acting on point P.
# Generalized active forces (unconstrained): Fr_u = F_point * pv_point.
F_O = m*g*A.z
F_P = Fx * A.x + Fy * A.y + Fz * A.z
Fr_u = Matrix([dot(F_O, pv_o) + dot(F_P, pv_p) for pv_o, pv_p in
zip(partial_v_O, partial_v_P)])
# Inertia force: R_star_O.
# Inertia of disc: I_C_O, where J is a inertia component about principal axis.
# Inertia torque: T_star_C.
# Generalized inertia forces (unconstrained): Fr_star_u.
R_star_O = -m*O.acc(N)
I_C_O = inertia(B, I, J, I)
T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \
+ cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N))))
Fr_star_u = Matrix([dot(R_star_O, pv) + dot(T_star_C, pav) for pv, pav in
zip(partial_v_O, partial_w_C)])
# Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c.
# Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady.
Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :]
Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\
+ A_rs.T * Fr_star_u[3:6, :]
Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\
.subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand()
# Second, using KaneMethod in mechanics for fr, frstar and frstar_steady.
# Rigid Bodies: disc, with inertia I_C_O.
iner_tuple = (I_C_O, O)
disc = RigidBody('disc', O, C, m, iner_tuple)
bodyList = [disc]
# Generalized forces: Gravity: F_o; Auxiliary forces: F_p.
F_o = (O, F_O)
F_p = (P, F_P)
forceList = [F_o, F_p]
# KanesMethod.
kane = KanesMethod(
N, q_ind= q[:3], u_ind= u[:3], kd_eqs=kindiffs,
q_dependent=q[3:], configuration_constraints = f_c,
u_dependent=u[3:], velocity_constraints= f_v,
u_auxiliary=ua
)
# fr, frstar, frstar_steady and kdd(kinematic differential equations).
(fr, frstar)= kane.kanes_equations(bodyList, forceList)
frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\
.subs({q[3]: -r*cos(q[1])}).expand()
kdd = kane.kindiffdict()
assert Matrix(Fr_c).expand() == fr.expand()
assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand()
# These Matrices have some Integer(0) and some Float(0). Running under
# SymEngine gives different types of zero.
assert (simplify(Matrix(Fr_star_steady).expand()).xreplace({0:0.0}) ==
simplify(frstar_steady.expand()).xreplace({0:0.0}))
syms_in_forcing = find_dynamicsymbols(kane.forcing)
for qdi in qd:
assert qdi not in syms_in_forcing
def test_non_central_inertia():
# This tests that the calculation of Fr* does not depend the point
# about which the inertia of a rigid body is defined. This test solves
# exercises 8.12, 8.17 from Kane 1985.
# Declare symbols
q1, q2, q3 = dynamicsymbols('q1:4')
q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
# Reference Frames
F = ReferenceFrame('F')
P = F.orientnew('P', 'axis', [-theta, F.y])
A = P.orientnew('A', 'axis', [q1, P.x])
A.set_ang_vel(F, u1*A.x + u3*A.z)
# define frames for wheels
B = A.orientnew('B', 'axis', [q2, A.z])
C = A.orientnew('C', 'axis', [q3, A.z])
B.set_ang_vel(A, u4 * A.z)
C.set_ang_vel(A, u5 * A.z)
# define points D, S*, Q on frame A and their velocities
pD = Point('D')
pD.set_vel(A, 0)
# u3 will not change v_D_F since wheels are still assumed to roll without slip.
pD.set_vel(F, u2 * A.y)
pS_star = pD.locatenew('S*', e*A.y)
pQ = pD.locatenew('Q', f*A.y - R*A.x)
for p in [pS_star, pQ]:
p.v2pt_theory(pD, F, A)
# masscenters of bodies A, B, C
pA_star = pD.locatenew('A*', a*A.y)
pB_star = pD.locatenew('B*', b*A.z)
pC_star = pD.locatenew('C*', -b*A.z)
for p in [pA_star, pB_star, pC_star]:
p.v2pt_theory(pD, F, A)
# points of B, C touching the plane P
pB_hat = pB_star.locatenew('B^', -R*A.x)
pC_hat = pC_star.locatenew('C^', -R*A.x)
pB_hat.v2pt_theory(pB_star, F, B)
pC_hat.v2pt_theory(pC_star, F, C)
# the velocities of B^, C^ are zero since B, C are assumed to roll without slip
kde = [q1d - u1, q2d - u4, q3d - u5]
vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
# inertias of bodies A, B, C
# IA22, IA23, IA33 are not specified in the problem statement, but are
# necessary to define an inertia object. Although the values of
# IA22, IA23, IA33 are not known in terms of the variables given in the
# problem statement, they do not appear in the general inertia terms.
inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
inertia_B = inertia(B, K, K, J)
inertia_C = inertia(C, K, K, J)
# define the rigid bodies A, B, C
rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde,
u_dependent=[u4, u5], velocity_constraints=vc,
u_auxiliary=[u3])
forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
bodies = [rbA, rbB, rbC]
fr, fr_star = km.kanes_equations(bodies, forces)
vc_map = solve(vc, [u4, u5])
# KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
fr_star_expected = Matrix([
-(IA + 2*J*b**2/R**2 + 2*K +
mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
-(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
0])
t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand()
assert ((fr_star_expected - t).expand() == zeros(3, 1))
# define inertias of rigid bodies A, B, C about point D
# I_S/O = I_S/S* + I_S*/O
bodies2 = []
for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
I = I_star + inertia_of_point_mass(rb.mass,
rb.masscenter.pos_from(pD),
rb.frame)
bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
(I, pD)))
fr2, fr_star2 = km.kanes_equations(bodies2, forces)
t = trigsimp(fr_star2.subs(vc_map).subs({u3: 0})).doit()
assert (fr_star_expected - t).expand() == zeros(3, 1)
def test_sub_qdot():
# This test solves exercises 8.12, 8.17 from Kane 1985 and defines
# some velocities in terms of q, qdot.
## --- Declare symbols ---
q1, q2, q3 = dynamicsymbols('q1:4')
q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
u1, u2, u3 = dynamicsymbols('u1:4')
u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
Q1, Q2, Q3 = symbols('Q1 Q2 Q3')
# --- Reference Frames ---
F = ReferenceFrame('F')
P = F.orientnew('P', 'axis', [-theta, F.y])
A = P.orientnew('A', 'axis', [q1, P.x])
A.set_ang_vel(F, u1*A.x + u3*A.z)
# define frames for wheels
B = A.orientnew('B', 'axis', [q2, A.z])
C = A.orientnew('C', 'axis', [q3, A.z])
## --- define points D, S*, Q on frame A and their velocities ---
pD = Point('D')
pD.set_vel(A, 0)
# u3 will not change v_D_F since wheels are still assumed to roll w/o slip
pD.set_vel(F, u2 * A.y)
pS_star = pD.locatenew('S*', e*A.y)
pQ = pD.locatenew('Q', f*A.y - R*A.x)
# masscenters of bodies A, B, C
pA_star = pD.locatenew('A*', a*A.y)
pB_star = pD.locatenew('B*', b*A.z)
pC_star = pD.locatenew('C*', -b*A.z)
for p in [pS_star, pQ, pA_star, pB_star, pC_star]:
p.v2pt_theory(pD, F, A)
# points of B, C touching the plane P
pB_hat = pB_star.locatenew('B^', -R*A.x)
pC_hat = pC_star.locatenew('C^', -R*A.x)
pB_hat.v2pt_theory(pB_star, F, B)
pC_hat.v2pt_theory(pC_star, F, C)
# --- relate qdot, u ---
# the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip
kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
kde += [u1 - q1d]
kde_map = solve(kde, [q1d, q2d, q3d])
for k, v in list(kde_map.items()):
kde_map[k.diff(t)] = v.diff(t)
# inertias of bodies A, B, C
# IA22, IA23, IA33 are not specified in the problem statement, but are
# necessary to define an inertia object. Although the values of
# IA22, IA23, IA33 are not known in terms of the variables given in the
# problem statement, they do not appear in the general inertia terms.
inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
inertia_B = inertia(B, K, K, J)
inertia_C = inertia(C, K, K, J)
# define the rigid bodies A, B, C
rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
## --- use kanes method ---
km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3])
forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
bodies = [rbA, rbB, rbC]
# Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2)
# -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2
fr_expected = Matrix([
f*Q3 + M*g*e*sin(theta)*cos(q1),
Q2 + M*g*sin(theta)*sin(q1),
e*M*g*cos(theta) - Q1*f - Q2*R])
#Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))])
fr_star_expected = Matrix([
-(IA + 2*J*b**2/R**2 + 2*K +
mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
-(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
0])
fr, fr_star = km.kanes_equations(bodies, forces)
assert (fr.expand() == fr_expected.expand())
assert ((fr_star_expected - trigsimp(fr_star)).expand() == zeros(3, 1))
def test_sub_qdot2():
# This test solves exercises 8.3 from Kane 1985 and defines
# all velocities in terms of q, qdot. We check that the generalized active
# forces are correctly computed if u terms are only defined in the
# kinematic differential equations.
#
# This functionality was added in PR 8948. Without qdot/u substitution, the
# KanesMethod constructor will fail during the constraint initialization as
# the B matrix will be poorly formed and inversion of the dependent part
# will fail.
g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t')
q = dynamicsymbols('q:5')
qd = dynamicsymbols('q:5', level=1)
u = dynamicsymbols('u:5')
## Define inertial, intermediate, and rigid body reference frames
A = ReferenceFrame('A')
B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z])
B = B_prime.orientnew('B', 'Axis', [pi/2 - q[1], B_prime.x])
C = B.orientnew('C', 'Axis', [q[2], B.z])
## Define points of interest and their velocities
pO = Point('O')
pO.set_vel(A, 0)
# R is the point in plane H that comes into contact with disk C.
pR = pO.locatenew('R', q[3]*A.x + q[4]*A.y)
pR.set_vel(A, pR.pos_from(pO).diff(t, A))
pR.set_vel(B, 0)
# C^ is the point in disk C that comes into contact with plane H.
pC_hat = pR.locatenew('C^', 0)
pC_hat.set_vel(C, 0)
# C* is the point at the center of disk C.
pCs = pC_hat.locatenew('C*', R*B.y)
pCs.set_vel(C, 0)
pCs.set_vel(B, 0)
# calculate velocites of points C* and C^ in frame A
pCs.v2pt_theory(pR, A, B) # points C* and R are fixed in frame B
pC_hat.v2pt_theory(pCs, A, C) # points C* and C^ are fixed in frame C
## Define forces on each point of the system
R_C_hat = Px*A.x + Py*A.y + Pz*A.z
R_Cs = -m*g*A.z
forces = [(pC_hat, R_C_hat), (pCs, R_Cs)]
## Define kinematic differential equations
# let ui = omega_C_A & bi (i = 1, 2, 3)
# u4 = qd4, u5 = qd5
u_expr = [C.ang_vel_in(A) & uv for uv in B]
u_expr += qd[3:]
kde = [ui - e for ui, e in zip(u, u_expr)]
km1 = KanesMethod(A, q, u, kde)
fr1, _ = km1.kanes_equations([], forces)
## Calculate generalized active forces if we impose the condition that the
# disk C is rolling without slipping
u_indep = u[:3]
u_dep = list(set(u) - set(u_indep))
vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]]
km2 = KanesMethod(A, q, u_indep, kde,
u_dependent=u_dep, velocity_constraints=vc)
fr2, _ = km2.kanes_equations([], forces)
fr1_expected = Matrix([
-R*g*m*sin(q[1]),
-R*(Px*cos(q[0]) + Py*sin(q[0]))*tan(q[1]),
R*(Px*cos(q[0]) + Py*sin(q[0])),
Px,
Py])
fr2_expected = Matrix([
-R*g*m*sin(q[1]),
0,
0])
assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand()))
assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
|