File size: 10,226 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from sympy.core.function import expand
from sympy.core.symbol import symbols
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.dense import Matrix
from sympy.simplify.trigsimp import trigsimp
from sympy.physics.mechanics import (
    PinJoint, JointsMethod, RigidBody, Particle, Body, KanesMethod,
    PrismaticJoint, LagrangesMethod, inertia)
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy import zeros
from sympy.utilities.lambdify import lambdify
from sympy.solvers.solvers import solve


t = dynamicsymbols._t # type: ignore


def test_jointsmethod():
    with warns_deprecated_sympy():
        P = Body('P')
        C = Body('C')
    Pin = PinJoint('P1', P, C)
    C_ixx, g = symbols('C_ixx g')
    q, u = dynamicsymbols('q_P1, u_P1')
    P.apply_force(g*P.y)
    with warns_deprecated_sympy():
        method = JointsMethod(P, Pin)
    assert method.frame == P.frame
    assert method.bodies == [C, P]
    assert method.loads == [(P.masscenter, g*P.frame.y)]
    assert method.q == Matrix([q])
    assert method.u == Matrix([u])
    assert method.kdes == Matrix([u - q.diff()])
    soln = method.form_eoms()
    assert soln == Matrix([[-C_ixx*u.diff()]])
    assert method.forcing_full == Matrix([[u], [0]])
    assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
    assert isinstance(method.method, KanesMethod)


def test_rigid_body_particle_compatibility():
    l, m, g = symbols('l m g')
    C = RigidBody('C')
    b = Particle('b', mass=m)
    b_frame = ReferenceFrame('b_frame')
    q, u = dynamicsymbols('q u')
    P = PinJoint('P', C, b, coordinates=q, speeds=u, child_interframe=b_frame,
                 child_point=-l * b_frame.x, joint_axis=C.z)
    with warns_deprecated_sympy():
        method = JointsMethod(C, P)
    method.loads.append((b.masscenter, m * g * C.x))
    method.form_eoms()
    rhs = method.rhs()
    assert rhs[1] == -g*sin(q)/l


def test_jointmethod_duplicate_coordinates_speeds():
    with warns_deprecated_sympy():
        P = Body('P')
        C = Body('C')
        T = Body('T')
    q, u = dynamicsymbols('q u')
    P1 = PinJoint('P1', P, C, q)
    P2 = PrismaticJoint('P2', C, T, q)
    with warns_deprecated_sympy():
        raises(ValueError, lambda: JointsMethod(P, P1, P2))

    P1 = PinJoint('P1', P, C, speeds=u)
    P2 = PrismaticJoint('P2', C, T, speeds=u)
    with warns_deprecated_sympy():
        raises(ValueError, lambda: JointsMethod(P, P1, P2))

    P1 = PinJoint('P1', P, C, q, u)
    P2 = PrismaticJoint('P2', C, T, q, u)
    with warns_deprecated_sympy():
        raises(ValueError, lambda: JointsMethod(P, P1, P2))

def test_complete_simple_double_pendulum():
    q1, q2 = dynamicsymbols('q1 q2')
    u1, u2 = dynamicsymbols('u1 u2')
    m, l, g = symbols('m l g')
    with warns_deprecated_sympy():
        C = Body('C')  # ceiling
        PartP = Body('P', mass=m)
        PartR = Body('R', mass=m)
    J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
                  child_point=-l*PartP.x, joint_axis=C.z)
    J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
                  child_point=-l*PartR.x, joint_axis=PartP.z)

    PartP.apply_force(m*g*C.x)
    PartR.apply_force(m*g*C.x)

    with warns_deprecated_sympy():
        method = JointsMethod(C, J1, J2)
    method.form_eoms()

    assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
                                                      [0, 1, 0, 0],
                                                      [0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
                                                      [0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
    assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
                                           g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
                                          [-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))

def test_two_dof_joints():
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    with warns_deprecated_sympy():
        W = Body('W')
        B1 = Body('B1', mass=m)
        B2 = Body('B2', mass=m)
    J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
    J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
    W.apply_force(k1*q1*W.x, reaction_body=B1)
    W.apply_force(c1*u1*W.x, reaction_body=B1)
    B1.apply_force(k2*q2*W.x, reaction_body=B2)
    B1.apply_force(c2*u2*W.x, reaction_body=B2)
    with warns_deprecated_sympy():
        method = JointsMethod(W, J1, J2)
    method.form_eoms()
    MM = method.mass_matrix
    forcing = method.forcing
    rhs = MM.LUsolve(forcing)
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)

def test_simple_pedulum():
    l, m, g = symbols('l m g')
    with warns_deprecated_sympy():
        C = Body('C')
        b = Body('b', mass=m)
    q = dynamicsymbols('q')
    P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q,
                 child_point=-l * b.x, joint_axis=C.z)
    b.potential_energy = - m * g * l * cos(q)
    with warns_deprecated_sympy():
        method = JointsMethod(C, P)
    method.form_eoms(LagrangesMethod)
    rhs = method.rhs()
    assert rhs[1] == -g*sin(q)/l

def test_chaos_pendulum():
    #https://www.pydy.org/examples/chaos_pendulum.html
    mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
    theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')

    A = ReferenceFrame('A')
    B = ReferenceFrame('B')

    with warns_deprecated_sympy():
        rod = Body('rod', mass=mA, frame=A,
                   central_inertia=inertia(A, IAxx, IAxx, 0))
        plate = Body('plate', mass=mB, frame=B,
                     central_inertia=inertia(B, IBxx, IByy, IBzz))
        C = Body('C')
    J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
                  child_point=-lA * rod.z, joint_axis=C.y)
    J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
                  parent_point=(lB - lA) * rod.z, joint_axis=rod.z)

    rod.apply_force(mA*g*C.z)
    plate.apply_force(mB*g*C.z)

    with warns_deprecated_sympy():
        method = JointsMethod(C, J1, J2)
    method.form_eoms()

    MM = method.mass_matrix
    forcing = method.forcing
    rhs = MM.LUsolve(forcing)
    xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
            cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
                sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
    assert (rhs[0] - xd).simplify() == 0
    xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
    assert (rhs[1] - xd).simplify() == 0

def test_four_bar_linkage_with_manual_constraints():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
    l1, l2, l3, l4, rho = symbols('l1:5, rho')

    N = ReferenceFrame('N')
    inertias = [inertia(N, 0, 0, rho * l ** 3 / 12) for l in (l1, l2, l3, l4)]
    with warns_deprecated_sympy():
        link1 = Body('Link1', frame=N, mass=rho * l1,
                     central_inertia=inertias[0])
        link2 = Body('Link2', mass=rho * l2, central_inertia=inertias[1])
        link3 = Body('Link3', mass=rho * l3, central_inertia=inertias[2])
        link4 = Body('Link4', mass=rho * l4, central_inertia=inertias[3])

    joint1 = PinJoint(
        'J1', link1, link2, coordinates=q1, speeds=u1, joint_axis=link1.z,
        parent_point=l1 / 2 * link1.x, child_point=-l2 / 2 * link2.x)
    joint2 = PinJoint(
        'J2', link2, link3, coordinates=q2, speeds=u2, joint_axis=link2.z,
        parent_point=l2 / 2 * link2.x, child_point=-l3 / 2 * link3.x)
    joint3 = PinJoint(
        'J3', link3, link4, coordinates=q3, speeds=u3, joint_axis=link3.z,
        parent_point=l3 / 2 * link3.x, child_point=-l4 / 2 * link4.x)

    loop = link4.masscenter.pos_from(link1.masscenter) \
           + l1 / 2 * link1.x + l4 / 2 * link4.x

    fh = Matrix([loop.dot(link1.x), loop.dot(link1.y)])

    with warns_deprecated_sympy():
        method = JointsMethod(link1, joint1, joint2, joint3)

    t = dynamicsymbols._t
    qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
    fhd = fh.diff(t).subs(qdots)

    kane = KanesMethod(method.frame, q_ind=[q1], u_ind=[u1],
                       q_dependent=[q2, q3], u_dependent=[u2, u3],
                       kd_eqs=method.kdes, configuration_constraints=fh,
                       velocity_constraints=fhd, forcelist=method.loads,
                       bodies=method.bodies)
    fr, frs = kane.kanes_equations()
    assert fr == zeros(1)

    # Numerically check the mass- and forcing-matrix
    p = Matrix([l1, l2, l3, l4, rho])
    q = Matrix([q1, q2, q3])
    u = Matrix([u1, u2, u3])
    eval_m = lambdify((q, p), kane.mass_matrix)
    eval_f = lambdify((q, u, p), kane.forcing)
    eval_fhd = lambdify((q, u, p), fhd)

    p_vals = [0.13, 0.24, 0.21, 0.34, 997]
    q_vals = [2.1, 0.6655470375077588, 2.527408138024188]  # Satisfies fh
    u_vals = [0.2, -0.17963733938852067, 0.1309060540601612]  # Satisfies fhd
    mass_check = Matrix([[3.452709815256506e+01, 7.003948798374735e+00,
                          -4.939690970641498e+00],
                         [-2.203792703880936e-14, 2.071702479957077e-01,
                          2.842917573033711e-01],
                         [-1.300000000000123e-01, -8.836934896046506e-03,
                          1.864891330060847e-01]])
    forcing_check = Matrix([[-0.031211821321648],
                            [-0.00066022608181],
                            [0.001813559741243]])
    eps = 1e-10
    assert all(abs(x) < eps for x in eval_fhd(q_vals, u_vals, p_vals))
    assert all(abs(x) < eps for x in
               (Matrix(eval_m(q_vals, p_vals)) - mass_check))
    assert all(abs(x) < eps for x in
               (Matrix(eval_f(q_vals, u_vals, p_vals)) - forcing_check))