Spaces:
Running
Running
File size: 37,171 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
from sympy import zeros, Matrix, diff, eye
from sympy.core.sorting import default_sort_key
from sympy.physics.vector import (ReferenceFrame, dynamicsymbols,
partial_velocity)
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.physics.mechanics.functions import (msubs, find_dynamicsymbols,
_f_list_parser,
_validate_coordinates,
_parse_linear_solver)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities.iterables import iterable
__all__ = ['KanesMethod']
class KanesMethod(_Methods):
r"""Kane's method object.
Explanation
===========
This object is used to do the "book-keeping" as you go through and form
equations of motion in the way Kane presents in:
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
The attributes are for equations in the form [M] udot = forcing.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
bodies : iterable
Iterable of Particle and RigidBody objects in the system.
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
auxiliary_eqs : Matrix
If applicable, the set of auxiliary Kane's
equations used to solve for non-contributing
forces.
mass_matrix : Matrix
The system's dynamics mass matrix: [k_d; k_dnh]
forcing : Matrix
The system's dynamics forcing vector: -[f_d; f_dnh]
mass_matrix_kin : Matrix
The "mass matrix" for kinematic differential equations: k_kqdot
forcing_kin : Matrix
The forcing vector for kinematic differential equations: -(k_ku*u + f_k)
mass_matrix_full : Matrix
The "mass matrix" for the u's and q's with dynamics and kinematics
forcing_full : Matrix
The "forcing vector" for the u's and q's with dynamics and kinematics
Parameters
==========
frame : ReferenceFrame
The inertial reference frame for the system.
q_ind : iterable of dynamicsymbols
Independent generalized coordinates.
u_ind : iterable of dynamicsymbols
Independent generalized speeds.
kd_eqs : iterable of Expr, optional
Kinematic differential equations, which linearly relate the generalized
speeds to the time-derivatives of the generalized coordinates.
q_dependent : iterable of dynamicsymbols, optional
Dependent generalized coordinates.
configuration_constraints : iterable of Expr, optional
Constraints on the system's configuration, i.e. holonomic constraints.
u_dependent : iterable of dynamicsymbols, optional
Dependent generalized speeds.
velocity_constraints : iterable of Expr, optional
Constraints on the system's velocity, i.e. the combination of the
nonholonomic constraints and the time-derivative of the holonomic
constraints.
acceleration_constraints : iterable of Expr, optional
Constraints on the system's acceleration, by default these are the
time-derivative of the velocity constraints.
u_auxiliary : iterable of dynamicsymbols, optional
Auxiliary generalized speeds.
bodies : iterable of Particle and/or RigidBody, optional
The particles and rigid bodies in the system.
forcelist : iterable of tuple[Point | ReferenceFrame, Vector], optional
Forces and torques applied on the system.
explicit_kinematics : bool
Boolean whether the mass matrices and forcing vectors should use the
explicit form (default) or implicit form for kinematics.
See the notes for more details.
kd_eqs_solver : str, callable
Method used to solve the kinematic differential equations. If a string
is supplied, it should be a valid method that can be used with the
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`. If a callable is
supplied, it should have the format ``f(A, rhs)``, where it solves the
equations and returns the solution. The default utilizes LU solve. See
the notes for more information.
constraint_solver : str, callable
Method used to solve the velocity constraints. If a string is
supplied, it should be a valid method that can be used with the
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`. If a callable is
supplied, it should have the format ``f(A, rhs)``, where it solves the
equations and returns the solution. The default utilizes LU solve. See
the notes for more information.
Notes
=====
The mass matrices and forcing vectors related to kinematic equations
are given in the explicit form by default. In other words, the kinematic
mass matrix is $\mathbf{k_{k\dot{q}}} = \mathbf{I}$.
In order to get the implicit form of those matrices/vectors, you can set the
``explicit_kinematics`` attribute to ``False``. So $\mathbf{k_{k\dot{q}}}$
is not necessarily an identity matrix. This can provide more compact
equations for non-simple kinematics.
Two linear solvers can be supplied to ``KanesMethod``: one for solving the
kinematic differential equations and one to solve the velocity constraints.
Both of these sets of equations can be expressed as a linear system ``Ax = rhs``,
which have to be solved in order to obtain the equations of motion.
The default solver ``'LU'``, which stands for LU solve, results relatively low
number of operations. The weakness of this method is that it can result in zero
division errors.
If zero divisions are encountered, a possible solver which may solve the problem
is ``"CRAMER"``. This method uses Cramer's rule to solve the system. This method
is slower and results in more operations than the default solver. However it only
uses a single division by default per entry of the solution.
While a valid list of solvers can be found at
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`, it is also possible to supply a
`callable`. This way it is possible to use a different solver routine. If the
kinematic differential equations are not too complex it can be worth it to simplify
the solution by using ``lambda A, b: simplify(Matrix.LUsolve(A, b))``. Another
option solver one may use is :func:`sympy.solvers.solveset.linsolve`. This can be
done using `lambda A, b: tuple(linsolve((A, b)))[0]`, where we select the first
solution as our system should have only one unique solution.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized speeds and coordinates and their
derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> m, c, k = symbols('m c k')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
Next we need to arrange/store information in the way that KanesMethod
requires. The kinematic differential equations should be an iterable of
expressions. A list of forces/torques must be constructed, where each entry
in the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where
the Vectors represent the Force or Torque.
Next a particle needs to be created, and it needs to have a point and mass
assigned to it.
Finally, a list of all bodies and particles needs to be created.
>>> kd = [qd - u]
>>> FL = [(P, (-k * q - c * u) * N.x)]
>>> pa = Particle('pa', P, m)
>>> BL = [pa]
Finally we can generate the equations of motion.
First we create the KanesMethod object and supply an inertial frame,
coordinates, generalized speeds, and the kinematic differential equations.
Additional quantities such as configuration and motion constraints,
dependent coordinates and speeds, and auxiliary speeds are also supplied
here (see the online documentation).
Next we form FR* and FR to complete: Fr + Fr* = 0.
We have the equations of motion at this point.
It makes sense to rearrange them though, so we calculate the mass matrix and
the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is
the mass matrix, udot is a vector of the time derivatives of the
generalized speeds, and forcing is a vector representing "forcing" terms.
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> rhs
Matrix([[(-c*u(t) - k*q(t))/m]])
>>> KM.linearize(A_and_B=True)[0]
Matrix([
[ 0, 1],
[-k/m, -c/m]])
Please look at the documentation pages for more information on how to
perform linearization and how to deal with dependent coordinates & speeds,
and how do deal with bringing non-contributing forces into evidence.
"""
def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None,
configuration_constraints=None, u_dependent=None,
velocity_constraints=None, acceleration_constraints=None,
u_auxiliary=None, bodies=None, forcelist=None,
explicit_kinematics=True, kd_eqs_solver='LU',
constraint_solver='LU'):
"""Please read the online documentation. """
if not q_ind:
q_ind = [dynamicsymbols('dummy_q')]
kd_eqs = [dynamicsymbols('dummy_kd')]
if not isinstance(frame, ReferenceFrame):
raise TypeError('An inertial ReferenceFrame must be supplied')
self._inertial = frame
self._fr = None
self._frstar = None
self._forcelist = forcelist
self._bodylist = bodies
self.explicit_kinematics = explicit_kinematics
self._constraint_solver = constraint_solver
self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent,
u_auxiliary)
_validate_coordinates(self.q, self.u)
self._initialize_kindiffeq_matrices(kd_eqs, kd_eqs_solver)
self._initialize_constraint_matrices(
configuration_constraints, velocity_constraints,
acceleration_constraints, constraint_solver)
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux):
"""Initialize the coordinate and speed vectors."""
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize generalized coordinates
q_dep = none_handler(q_dep)
if not iterable(q_ind):
raise TypeError('Generalized coordinates must be an iterable.')
if not iterable(q_dep):
raise TypeError('Dependent coordinates must be an iterable.')
q_ind = Matrix(q_ind)
self._qdep = q_dep
self._q = Matrix([q_ind, q_dep])
self._qdot = self.q.diff(dynamicsymbols._t)
# Initialize generalized speeds
u_dep = none_handler(u_dep)
if not iterable(u_ind):
raise TypeError('Generalized speeds must be an iterable.')
if not iterable(u_dep):
raise TypeError('Dependent speeds must be an iterable.')
u_ind = Matrix(u_ind)
self._udep = u_dep
self._u = Matrix([u_ind, u_dep])
self._udot = self.u.diff(dynamicsymbols._t)
self._uaux = none_handler(u_aux)
def _initialize_constraint_matrices(self, config, vel, acc, linear_solver='LU'):
"""Initializes constraint matrices."""
linear_solver = _parse_linear_solver(linear_solver)
# Define vector dimensions
o = len(self.u)
m = len(self._udep)
p = o - m
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize configuration constraints
config = none_handler(config)
if len(self._qdep) != len(config):
raise ValueError('There must be an equal number of dependent '
'coordinates and configuration constraints.')
self._f_h = none_handler(config)
# Initialize velocity and acceleration constraints
vel = none_handler(vel)
acc = none_handler(acc)
if len(vel) != m:
raise ValueError('There must be an equal number of dependent '
'speeds and velocity constraints.')
if acc and (len(acc) != m):
raise ValueError('There must be an equal number of dependent '
'speeds and acceleration constraints.')
if vel:
u_zero = dict.fromkeys(self.u, 0)
udot_zero = dict.fromkeys(self._udot, 0)
# When calling kanes_equations, another class instance will be
# created if auxiliary u's are present. In this case, the
# computation of kinetic differential equation matrices will be
# skipped as this was computed during the original KanesMethod
# object, and the qd_u_map will not be available.
if self._qdot_u_map is not None:
vel = msubs(vel, self._qdot_u_map)
self._f_nh = msubs(vel, u_zero)
self._k_nh = (vel - self._f_nh).jacobian(self.u)
# If no acceleration constraints given, calculate them.
if not acc:
_f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u +
self._f_nh.diff(dynamicsymbols._t))
if self._qdot_u_map is not None:
_f_dnh = msubs(_f_dnh, self._qdot_u_map)
self._f_dnh = _f_dnh
self._k_dnh = self._k_nh
else:
if self._qdot_u_map is not None:
acc = msubs(acc, self._qdot_u_map)
self._f_dnh = msubs(acc, udot_zero)
self._k_dnh = (acc - self._f_dnh).jacobian(self._udot)
# Form of non-holonomic constraints is B*u + C = 0.
# We partition B into independent and dependent columns:
# Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds
# to independent speeds as: udep = Ars*uind, neglecting the C term.
B_ind = self._k_nh[:, :p]
B_dep = self._k_nh[:, p:o]
self._Ars = -linear_solver(B_dep, B_ind)
else:
self._f_nh = Matrix()
self._k_nh = Matrix()
self._f_dnh = Matrix()
self._k_dnh = Matrix()
self._Ars = Matrix()
def _initialize_kindiffeq_matrices(self, kdeqs, linear_solver='LU'):
"""Initialize the kinematic differential equation matrices.
Parameters
==========
kdeqs : sequence of sympy expressions
Kinematic differential equations in the form of f(u,q',q,t) where
f() = 0. The equations have to be linear in the generalized
coordinates and generalized speeds.
"""
linear_solver = _parse_linear_solver(linear_solver)
if kdeqs:
if len(self.q) != len(kdeqs):
raise ValueError('There must be an equal number of kinematic '
'differential equations and coordinates.')
u = self.u
qdot = self._qdot
kdeqs = Matrix(kdeqs)
u_zero = dict.fromkeys(u, 0)
uaux_zero = dict.fromkeys(self._uaux, 0)
qdot_zero = dict.fromkeys(qdot, 0)
# Extract the linear coefficient matrices as per the following
# equation:
#
# k_ku(q,t)*u(t) + k_kqdot(q,t)*q'(t) + f_k(q,t) = 0
#
k_ku = kdeqs.jacobian(u)
k_kqdot = kdeqs.jacobian(qdot)
f_k = kdeqs.xreplace(u_zero).xreplace(qdot_zero)
# The kinematic differential equations should be linear in both q'
# and u, so check for u and q' in the components.
dy_syms = find_dynamicsymbols(k_ku.row_join(k_kqdot).row_join(f_k))
nonlin_vars = [vari for vari in u[:] + qdot[:] if vari in dy_syms]
if nonlin_vars:
msg = ('The provided kinematic differential equations are '
'nonlinear in {}. They must be linear in the '
'generalized speeds and derivatives of the generalized '
'coordinates.')
raise ValueError(msg.format(nonlin_vars))
self._f_k_implicit = f_k.xreplace(uaux_zero)
self._k_ku_implicit = k_ku.xreplace(uaux_zero)
self._k_kqdot_implicit = k_kqdot
# Solve for q'(t) such that the coefficient matrices are now in
# this form:
#
# k_kqdot^-1*k_ku*u(t) + I*q'(t) + k_kqdot^-1*f_k = 0
#
# NOTE : Solving the kinematic differential equations here is not
# necessary and prevents the equations from being provided in fully
# implicit form.
f_k_explicit = linear_solver(k_kqdot, f_k)
k_ku_explicit = linear_solver(k_kqdot, k_ku)
self._qdot_u_map = dict(zip(qdot, -(k_ku_explicit*u + f_k_explicit)))
self._f_k = f_k_explicit.xreplace(uaux_zero)
self._k_ku = k_ku_explicit.xreplace(uaux_zero)
self._k_kqdot = eye(len(qdot))
else:
self._qdot_u_map = None
self._f_k_implicit = self._f_k = Matrix()
self._k_ku_implicit = self._k_ku = Matrix()
self._k_kqdot_implicit = self._k_kqdot = Matrix()
def _form_fr(self, fl):
"""Form the generalized active force."""
if fl is not None and (len(fl) == 0 or not iterable(fl)):
raise ValueError('Force pairs must be supplied in an '
'non-empty iterable or None.')
N = self._inertial
# pull out relevant velocities for constructing partial velocities
vel_list, f_list = _f_list_parser(fl, N)
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
f_list = [msubs(i, self._qdot_u_map) for i in f_list]
# Fill Fr with dot product of partial velocities and forces
o = len(self.u)
b = len(f_list)
FR = zeros(o, 1)
partials = partial_velocity(vel_list, self.u, N)
for i in range(o):
FR[i] = sum(partials[j][i].dot(f_list[j]) for j in range(b))
# In case there are dependent speeds
if self._udep:
p = o - len(self._udep)
FRtilde = FR[:p, 0]
FRold = FR[p:o, 0]
FRtilde += self._Ars.T * FRold
FR = FRtilde
self._forcelist = fl
self._fr = FR
return FR
def _form_frstar(self, bl):
"""Form the generalized inertia force."""
if not iterable(bl):
raise TypeError('Bodies must be supplied in an iterable.')
t = dynamicsymbols._t
N = self._inertial
# Dicts setting things to zero
udot_zero = dict.fromkeys(self._udot, 0)
uaux_zero = dict.fromkeys(self._uaux, 0)
uauxdot = [diff(i, t) for i in self._uaux]
uauxdot_zero = dict.fromkeys(uauxdot, 0)
# Dictionary of q' and q'' to u and u'
q_ddot_u_map = {k.diff(t): v.diff(t).xreplace(
self._qdot_u_map) for (k, v) in self._qdot_u_map.items()}
q_ddot_u_map.update(self._qdot_u_map)
# Fill up the list of partials: format is a list with num elements
# equal to number of entries in body list. Each of these elements is a
# list - either of length 1 for the translational components of
# particles or of length 2 for the translational and rotational
# components of rigid bodies. The inner most list is the list of
# partial velocities.
def get_partial_velocity(body):
if isinstance(body, RigidBody):
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
elif isinstance(body, Particle):
vlist = [body.point.vel(N),]
else:
raise TypeError('The body list may only contain either '
'RigidBody or Particle as list elements.')
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
return partial_velocity(v, self.u, N)
partials = [get_partial_velocity(body) for body in bl]
# Compute fr_star in two components:
# fr_star = -(MM*u' + nonMM)
o = len(self.u)
MM = zeros(o, o)
nonMM = zeros(o, 1)
zero_uaux = lambda expr: msubs(expr, uaux_zero)
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
for i, body in enumerate(bl):
if isinstance(body, RigidBody):
M = zero_uaux(body.mass)
I = zero_uaux(body.central_inertia)
vel = zero_uaux(body.masscenter.vel(N))
omega = zero_uaux(body.frame.ang_vel_in(N))
acc = zero_udot_uaux(body.masscenter.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
inertial_torque = zero_uaux((I.dt(body.frame).dot(omega)) +
msubs(I.dot(body.frame.ang_acc_in(N)), udot_zero) +
(omega.cross(I.dot(omega))))
for j in range(o):
tmp_vel = zero_uaux(partials[i][0][j])
tmp_ang = zero_uaux(I.dot(partials[i][1][j]))
for k in range(o):
# translational
MM[j, k] += M*tmp_vel.dot(partials[i][0][k])
# rotational
MM[j, k] += tmp_ang.dot(partials[i][1][k])
nonMM[j] += inertial_force.dot(partials[i][0][j])
nonMM[j] += inertial_torque.dot(partials[i][1][j])
else:
M = zero_uaux(body.mass)
vel = zero_uaux(body.point.vel(N))
acc = zero_udot_uaux(body.point.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
for j in range(o):
temp = zero_uaux(partials[i][0][j])
for k in range(o):
MM[j, k] += M*temp.dot(partials[i][0][k])
nonMM[j] += inertial_force.dot(partials[i][0][j])
# Compose fr_star out of MM and nonMM
MM = zero_uaux(msubs(MM, q_ddot_u_map))
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
udot_zero, uauxdot_zero, uaux_zero)
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
# If there are dependent speeds, we need to find fr_star_tilde
if self._udep:
p = o - len(self._udep)
fr_star_ind = fr_star[:p, 0]
fr_star_dep = fr_star[p:o, 0]
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
# Apply the same to MM
MMi = MM[:p, :]
MMd = MM[p:o, :]
MM = MMi + (self._Ars.T * MMd)
# Apply the same to nonMM
nonMM = nonMM[:p, :] + (self._Ars.T * nonMM[p:o, :])
self._bodylist = bl
self._frstar = fr_star
self._k_d = MM
self._f_d = -(self._fr - nonMM)
return fr_star
def to_linearizer(self, linear_solver='LU'):
"""Returns an instance of the Linearizer class, initiated from the
data in the KanesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points).
Parameters
==========
linear_solver : str, callable
Method used to solve the several symbolic linear systems of the
form ``A*x=b`` in the linearization process. If a string is
supplied, it should be a valid method that can be used with the
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`. If a callable is
supplied, it should have the format ``x = f(A, b)``, where it
solves the equations and returns the solution. The default is
``'LU'`` which corresponds to SymPy's ``A.LUsolve(b)``.
``LUsolve()`` is fast to compute but will often result in
divide-by-zero and thus ``nan`` results.
Returns
=======
Linearizer
An instantiated
:class:`sympy.physics.mechanics.linearize.Linearizer`.
"""
if (self._fr is None) or (self._frstar is None):
raise ValueError('Need to compute Fr, Fr* first.')
# Get required equation components. The Kane's method class breaks
# these into pieces. Need to reassemble
f_c = self._f_h
if self._f_nh and self._k_nh:
f_v = self._f_nh + self._k_nh*Matrix(self.u)
else:
f_v = Matrix()
if self._f_dnh and self._k_dnh:
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
else:
f_a = Matrix()
# Dicts to sub to zero, for splitting up expressions
u_zero = dict.fromkeys(self.u, 0)
ud_zero = dict.fromkeys(self._udot, 0)
qd_zero = dict.fromkeys(self._qdot, 0)
qd_u_zero = dict.fromkeys(Matrix([self._qdot, self.u]), 0)
# Break the kinematic differential eqs apart into f_0 and f_1
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
# Break the dynamic differential eqs into f_2 and f_3
f_2 = msubs(self._frstar, qd_u_zero)
f_3 = msubs(self._frstar, ud_zero) + self._fr
f_4 = zeros(len(f_2), 1)
# Get the required vector components
q = self.q
u = self.u
if self._qdep:
q_i = q[:-len(self._qdep)]
else:
q_i = q
q_d = self._qdep
if self._udep:
u_i = u[:-len(self._udep)]
else:
u_i = u
u_d = self._udep
# Form dictionary to set auxiliary speeds & their derivatives to 0.
uaux = self._uaux
uauxdot = uaux.diff(dynamicsymbols._t)
uaux_zero = dict.fromkeys(Matrix([uaux, uauxdot]), 0)
# Checking for dynamic symbols outside the dynamic differential
# equations; throws error if there is.
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
raise ValueError('Cannot have dynamicsymbols outside dynamic \
forcing vector.')
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r, linear_solver=linear_solver)
# TODO : Remove `new_method` after 1.1 has been released.
def linearize(self, *, new_method=None, linear_solver='LU', **kwargs):
""" Linearize the equations of motion about a symbolic operating point.
Parameters
==========
new_method
Deprecated, does nothing and will be removed.
linear_solver : str, callable
Method used to solve the several symbolic linear systems of the
form ``A*x=b`` in the linearization process. If a string is
supplied, it should be a valid method that can be used with the
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`. If a callable is
supplied, it should have the format ``x = f(A, b)``, where it
solves the equations and returns the solution. The default is
``'LU'`` which corresponds to SymPy's ``A.LUsolve(b)``.
``LUsolve()`` is fast to compute but will often result in
divide-by-zero and thus ``nan`` results.
**kwargs
Extra keyword arguments are passed to
:meth:`sympy.physics.mechanics.linearize.Linearizer.linearize`.
Explanation
===========
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class.
"""
linearizer = self.to_linearizer(linear_solver=linear_solver)
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def kanes_equations(self, bodies=None, loads=None):
""" Method to form Kane's equations, Fr + Fr* = 0.
Explanation
===========
Returns (Fr, Fr*). In the case where auxiliary generalized speeds are
present (say, s auxiliary speeds, o generalized speeds, and m motion
constraints) the length of the returned vectors will be o - m + s in
length. The first o - m equations will be the constrained Kane's
equations, then the s auxiliary Kane's equations. These auxiliary
equations can be accessed with the auxiliary_eqs property.
Parameters
==========
bodies : iterable
An iterable of all RigidBody's and Particle's in the system.
A system must have at least one body.
loads : iterable
Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
Must be either a non-empty iterable of tuples or None which corresponds
to a system with no constraints.
"""
if bodies is None:
bodies = self.bodies
if loads is None and self._forcelist is not None:
loads = self._forcelist
if loads == []:
loads = None
if not self._k_kqdot:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
fr = self._form_fr(loads)
frstar = self._form_frstar(bodies)
if self._uaux:
if not self._udep:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux, constraint_solver=self._constraint_solver)
else:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux, u_dependent=self._udep,
velocity_constraints=(self._k_nh * self.u +
self._f_nh),
acceleration_constraints=(self._k_dnh * self._udot +
self._f_dnh),
constraint_solver=self._constraint_solver
)
km._qdot_u_map = self._qdot_u_map
self._km = km
fraux = km._form_fr(loads)
frstaraux = km._form_frstar(bodies)
self._aux_eq = fraux + frstaraux
self._fr = fr.col_join(fraux)
self._frstar = frstar.col_join(frstaraux)
return (self._fr, self._frstar)
def _form_eoms(self):
fr, frstar = self.kanes_equations(self.bodylist, self.forcelist)
return fr + frstar
def rhs(self, inv_method=None):
"""Returns the system's equations of motion in first order form. The
output is the right hand side of::
x' = |q'| =: f(q, u, r, p, t)
|u'|
The right hand side is what is needed by most numerical ODE
integrators.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrixbase.MatrixBase.inv`
"""
rhs = zeros(len(self.q) + len(self.u), 1)
kdes = self.kindiffdict()
for i, q_i in enumerate(self.q):
rhs[i] = kdes[q_i.diff()]
if inv_method is None:
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
else:
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
try_block_diag=True) *
self.forcing)
return rhs
def kindiffdict(self):
"""Returns a dictionary mapping q' to u."""
if not self._qdot_u_map:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
return self._qdot_u_map
@property
def auxiliary_eqs(self):
"""A matrix containing the auxiliary equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
if not self._uaux:
raise ValueError('No auxiliary speeds have been declared.')
return self._aux_eq
@property
def mass_matrix_kin(self):
r"""The kinematic "mass matrix" $\mathbf{k_{k\dot{q}}}$ of the system."""
return self._k_kqdot if self.explicit_kinematics else self._k_kqdot_implicit
@property
def forcing_kin(self):
"""The kinematic "forcing vector" of the system."""
if self.explicit_kinematics:
return -(self._k_ku * Matrix(self.u) + self._f_k)
else:
return -(self._k_ku_implicit * Matrix(self.u) + self._f_k_implicit)
@property
def mass_matrix(self):
"""The mass matrix of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return Matrix([self._k_d, self._k_dnh])
@property
def forcing(self):
"""The forcing vector of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return -Matrix([self._f_d, self._f_dnh])
@property
def mass_matrix_full(self):
"""The mass matrix of the system, augmented by the kinematic
differential equations in explicit or implicit form."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
o, n = len(self.u), len(self.q)
return (self.mass_matrix_kin.row_join(zeros(n, o))).col_join(
zeros(o, n).row_join(self.mass_matrix))
@property
def forcing_full(self):
"""The forcing vector of the system, augmented by the kinematic
differential equations in explicit or implicit form."""
return Matrix([self.forcing_kin, self.forcing])
@property
def q(self):
return self._q
@property
def u(self):
return self._u
@property
def bodylist(self):
return self._bodylist
@property
def forcelist(self):
return self._forcelist
@property
def bodies(self):
return self._bodylist
@property
def loads(self):
return self._forcelist
|