File size: 77,999 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
"""
Integer factorization
"""

from collections import defaultdict
import math

from sympy.core.containers import Dict
from sympy.core.mul import Mul
from sympy.core.numbers import Rational, Integer
from sympy.core.intfunc import num_digits
from sympy.core.power import Pow
from sympy.core.random import _randint
from sympy.core.singleton import S
from sympy.external.gmpy import (SYMPY_INTS, gcd, sqrt as isqrt,
                                 sqrtrem, iroot, bit_scan1, remove)
from .primetest import isprime, MERSENNE_PRIME_EXPONENTS, is_mersenne_prime
from .generate import sieve, primerange, nextprime
from .digits import digits
from sympy.utilities.decorator import deprecated
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import as_int, filldedent
from .ecm import _ecm_one_factor


def smoothness(n):
    """
    Return the B-smooth and B-power smooth values of n.

    The smoothness of n is the largest prime factor of n; the power-
    smoothness is the largest divisor raised to its multiplicity.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import smoothness
    >>> smoothness(2**7*3**2)
    (3, 128)
    >>> smoothness(2**4*13)
    (13, 16)
    >>> smoothness(2)
    (2, 2)

    See Also
    ========

    factorint, smoothness_p
    """

    if n == 1:
        return (1, 1)  # not prime, but otherwise this causes headaches
    facs = factorint(n)
    return max(facs), max(m**facs[m] for m in facs)


def smoothness_p(n, m=-1, power=0, visual=None):
    """
    Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...]
    where:

    1. p**M is the base-p divisor of n
    2. sm(p + m) is the smoothness of p + m (m = -1 by default)
    3. psm(p + m) is the power smoothness of p + m

    The list is sorted according to smoothness (default) or by power smoothness
    if power=1.

    The smoothness of the numbers to the left (m = -1) or right (m = 1) of a
    factor govern the results that are obtained from the p +/- 1 type factoring
    methods.

        >>> from sympy.ntheory.factor_ import smoothness_p, factorint
        >>> smoothness_p(10431, m=1)
        (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
        >>> smoothness_p(10431)
        (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
        >>> smoothness_p(10431, power=1)
        (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])

    If visual=True then an annotated string will be returned:

        >>> print(smoothness_p(21477639576571, visual=1))
        p**i=4410317**1 has p-1 B=1787, B-pow=1787
        p**i=4869863**1 has p-1 B=2434931, B-pow=2434931

    This string can also be generated directly from a factorization dictionary
    and vice versa:

        >>> factorint(17*9)
        {3: 2, 17: 1}
        >>> smoothness_p(_)
        'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16'
        >>> smoothness_p(_)
        {3: 2, 17: 1}

    The table of the output logic is:

        ====== ====== ======= =======
        |              Visual
        ------ ----------------------
        Input  True   False   other
        ====== ====== ======= =======
        dict    str    tuple   str
        str     str    tuple   dict
        tuple   str    tuple   str
        n       str    tuple   tuple
        mul     str    tuple   tuple
        ====== ====== ======= =======

    See Also
    ========

    factorint, smoothness
    """

    # visual must be True, False or other (stored as None)
    if visual in (1, 0):
        visual = bool(visual)
    elif visual not in (True, False):
        visual = None

    if isinstance(n, str):
        if visual:
            return n
        d = {}
        for li in n.splitlines():
            k, v = [int(i) for i in
                    li.split('has')[0].split('=')[1].split('**')]
            d[k] = v
        if visual is not True and visual is not False:
            return d
        return smoothness_p(d, visual=False)
    elif not isinstance(n, tuple):
        facs = factorint(n, visual=False)

    if power:
        k = -1
    else:
        k = 1
    if isinstance(n, tuple):
        rv = n
    else:
        rv = (m, sorted([(f,
                          tuple([M] + list(smoothness(f + m))))
                         for f, M in list(facs.items())],
                        key=lambda x: (x[1][k], x[0])))

    if visual is False or (visual is not True) and (type(n) in [int, Mul]):
        return rv
    lines = []
    for dat in rv[1]:
        dat = flatten(dat)
        dat.insert(2, m)
        lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat))
    return '\n'.join(lines)


def multiplicity(p, n):
    """
    Find the greatest integer m such that p**m divides n.

    Examples
    ========

    >>> from sympy import multiplicity, Rational
    >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
    [0, 1, 2, 3, 3]
    >>> multiplicity(3, Rational(1, 9))
    -2

    Note: when checking for the multiplicity of a number in a
    large factorial it is most efficient to send it as an unevaluated
    factorial or to call ``multiplicity_in_factorial`` directly:

    >>> from sympy.ntheory import multiplicity_in_factorial
    >>> from sympy import factorial
    >>> p = factorial(25)
    >>> n = 2**100
    >>> nfac = factorial(n, evaluate=False)
    >>> multiplicity(p, nfac)
    52818775009509558395695966887
    >>> _ == multiplicity_in_factorial(p, n)
    True

    See Also
    ========

    trailing

    """
    try:
        p, n = as_int(p), as_int(n)
    except ValueError:
        from sympy.functions.combinatorial.factorials import factorial
        if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)):
            p = Rational(p)
            n = Rational(n)
            if p.q == 1:
                if n.p == 1:
                    return -multiplicity(p.p, n.q)
                return multiplicity(p.p, n.p) - multiplicity(p.p, n.q)
            elif p.p == 1:
                return multiplicity(p.q, n.q)
            else:
                like = min(
                    multiplicity(p.p, n.p),
                    multiplicity(p.q, n.q))
                cross = min(
                    multiplicity(p.q, n.p),
                    multiplicity(p.p, n.q))
                return like - cross
        elif (isinstance(p, (SYMPY_INTS, Integer)) and
                isinstance(n, factorial) and
                isinstance(n.args[0], Integer) and
                n.args[0] >= 0):
            return multiplicity_in_factorial(p, n.args[0])
        raise ValueError('expecting ints or fractions, got %s and %s' % (p, n))

    if n == 0:
        raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n))
    return remove(n, p)[1]


def multiplicity_in_factorial(p, n):
    """return the largest integer ``m`` such that ``p**m`` divides ``n!``
    without calculating the factorial of ``n``.

    Parameters
    ==========

    p : Integer
        positive integer
    n : Integer
        non-negative integer

    Examples
    ========

    >>> from sympy.ntheory import multiplicity_in_factorial
    >>> from sympy import factorial

    >>> multiplicity_in_factorial(2, 3)
    1

    An instructive use of this is to tell how many trailing zeros
    a given factorial has. For example, there are 6 in 25!:

    >>> factorial(25)
    15511210043330985984000000
    >>> multiplicity_in_factorial(10, 25)
    6

    For large factorials, it is much faster/feasible to use
    this function rather than computing the actual factorial:

    >>> multiplicity_in_factorial(factorial(25), 2**100)
    52818775009509558395695966887

    See Also
    ========

    multiplicity

    """

    p, n = as_int(p), as_int(n)

    if p <= 0:
        raise ValueError('expecting positive integer got %s' % p )

    if n < 0:
        raise ValueError('expecting non-negative integer got %s' % n )

    # keep only the largest of a given multiplicity since those
    # of a given multiplicity will be goverened by the behavior
    # of the largest factor
    f = defaultdict(int)
    for k, v in factorint(p).items():
        f[v] = max(k, f[v])
    # multiplicity of p in n! depends on multiplicity
    # of prime `k` in p, so we floor divide by `v`
    # and keep it if smaller than the multiplicity of p
    # seen so far
    return min((n + k - sum(digits(n, k)))//(k - 1)//v for v, k in f.items())


def _perfect_power(n, next_p=2):
    """ Return integers ``(b, e)`` such that ``n == b**e`` if ``n`` is a unique
    perfect power with ``e > 1``, else ``False`` (e.g. 1 is not a perfect power).

    Explanation
    ===========

    This is a low-level helper for ``perfect_power``, for internal use.

    Parameters
    ==========

    n : int
        assume that n is a nonnegative integer
    next_p : int
        Assume that n has no factor less than next_p.
        i.e., all(n % p for p in range(2, next_p)) is True

    Examples
    ========
    >>> from sympy.ntheory.factor_ import _perfect_power
    >>> _perfect_power(16)
    (2, 4)
    >>> _perfect_power(17)
    False

    """
    if n <= 3:
        return False

    factors = {}
    g = 0
    multi = 1

    def done(n, factors, g, multi):
        g = gcd(g, multi)
        if g == 1:
            return False
        factors[n] = multi
        return math.prod(p**(e//g) for p, e in factors.items()), g

    # If n is small, only trial factoring is faster
    if n <= 1_000_000:
        n = _factorint_small(factors, n, 1_000, 1_000, next_p)[0]
        if n > 1:
            return False
        g = gcd(*factors.values())
        if g == 1:
            return False
        return math.prod(p**(e//g) for p, e in factors.items()), g

    # divide by 2
    if next_p < 3:
        g = bit_scan1(n)
        if g:
            if g == 1:
                return False
            n >>= g
            factors[2] = g
            if n == 1:
                return 2, g
            else:
                # If `m**g`, then we have found perfect power.
                # Otherwise, there is no possibility of perfect power, especially if `g` is prime.
                m, _exact = iroot(n, g)
                if _exact:
                    return 2*m, g
                elif isprime(g):
                    return False
        next_p = 3

    # square number?
    while n & 7 == 1: # n % 8 == 1:
        m, _exact = iroot(n, 2)
        if _exact:
            n = m
            multi <<= 1
        else:
            break
    if n < next_p**3:
        return done(n, factors, g, multi)

    # trial factoring
    # Since the maximum value an exponent can take is `log_{next_p}(n)`,
    # the number of exponents to be checked can be reduced by performing a trial factoring.
    # The value of `tf_max` needs more consideration.
    tf_max = n.bit_length()//27 + 24
    if next_p < tf_max:
        for p in primerange(next_p, tf_max):
            m, t = remove(n, p)
            if t:
                n = m
                t *= multi
                _g = gcd(g, t)
                if _g == 1:
                    return False
                factors[p] = t
                if n == 1:
                    return math.prod(p**(e//_g)
                                        for p, e in factors.items()), _g
                elif g == 0 or _g < g: # If g is updated
                    g = _g
                    m, _exact = iroot(n**multi, g)
                    if _exact:
                        return m * math.prod(p**(e//g)
                                            for p, e in factors.items()), g
                    elif isprime(g):
                        return False
        next_p = tf_max
    if n < next_p**3:
        return done(n, factors, g, multi)

    # check iroot
    if g:
        # If g is non-zero, the exponent is a divisor of g.
        # 2 can be omitted since it has already been checked.
        prime_iter = sorted(factorint(g >> bit_scan1(g)).keys())
    else:
        # The maximum possible value of the exponent is `log_{next_p}(n)`.
        # To compensate for the presence of computational error, 2 is added.
        prime_iter = primerange(3, int(math.log(n, next_p)) + 2)
    logn = math.log2(n)
    threshold = logn / 40 # Threshold for direct calculation
    for p in prime_iter:
        if threshold < p:
            # If p is large, find the power root p directly without `iroot`.
            while True:
                b = pow(2, logn / p)
                rb = int(b + 0.5)
                if abs(rb - b) < 0.01 and rb**p == n:
                    n = rb
                    multi *= p
                    logn = math.log2(n)
                else:
                    break
        else:
            while True:
                m, _exact = iroot(n, p)
                if _exact:
                    n = m
                    multi *= p
                    logn = math.log2(n)
                else:
                    break
        if n < next_p**(p + 2):
            break
    return done(n, factors, g, multi)


def perfect_power(n, candidates=None, big=True, factor=True):
    """
    Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a unique
    perfect power with ``e > 1``, else ``False`` (e.g. 1 is not a
    perfect power). A ValueError is raised if ``n`` is not Rational.

    By default, the base is recursively decomposed and the exponents
    collected so the largest possible ``e`` is sought. If ``big=False``
    then the smallest possible ``e`` (thus prime) will be chosen.

    If ``factor=True`` then simultaneous factorization of ``n`` is
    attempted since finding a factor indicates the only possible root
    for ``n``. This is True by default since only a few small factors will
    be tested in the course of searching for the perfect power.

    The use of ``candidates`` is primarily for internal use; if provided,
    False will be returned if ``n`` cannot be written as a power with one
    of the candidates as an exponent and factoring (beyond testing for
    a factor of 2) will not be attempted.

    Examples
    ========

    >>> from sympy import perfect_power, Rational
    >>> perfect_power(16)
    (2, 4)
    >>> perfect_power(16, big=False)
    (4, 2)

    Negative numbers can only have odd perfect powers:

    >>> perfect_power(-4)
    False
    >>> perfect_power(-8)
    (-2, 3)

    Rationals are also recognized:

    >>> perfect_power(Rational(1, 2)**3)
    (1/2, 3)
    >>> perfect_power(Rational(-3, 2)**3)
    (-3/2, 3)

    Notes
    =====

    To know whether an integer is a perfect power of 2 use

        >>> is2pow = lambda n: bool(n and not n & (n - 1))
        >>> [(i, is2pow(i)) for i in range(5)]
        [(0, False), (1, True), (2, True), (3, False), (4, True)]

    It is not necessary to provide ``candidates``. When provided
    it will be assumed that they are ints. The first one that is
    larger than the computed maximum possible exponent will signal
    failure for the routine.

        >>> perfect_power(3**8, [9])
        False
        >>> perfect_power(3**8, [2, 4, 8])
        (3, 8)
        >>> perfect_power(3**8, [4, 8], big=False)
        (9, 4)

    See Also
    ========
    sympy.core.intfunc.integer_nthroot
    sympy.ntheory.primetest.is_square
    """
    if isinstance(n, Rational) and not n.is_Integer:
        p, q = n.as_numer_denom()
        if p is S.One:
            pp = perfect_power(q)
            if pp:
                pp = (n.func(1, pp[0]), pp[1])
        else:
            pp = perfect_power(p)
            if pp:
                num, e = pp
                pq = perfect_power(q, [e])
                if pq:
                    den, _ = pq
                    pp = n.func(num, den), e
        return pp

    n = as_int(n)
    if n < 0:
        pp = perfect_power(-n)
        if pp:
            b, e = pp
            if e % 2:
                return -b, e
        return False

    if candidates is None and big:
        return _perfect_power(n)

    if n <= 3:
        # no unique exponent for 0, 1
        # 2 and 3 have exponents of 1
        return False
    logn = math.log2(n)
    max_possible = int(logn) + 2  # only check values less than this
    not_square = n % 10 in [2, 3, 7, 8]  # squares cannot end in 2, 3, 7, 8
    min_possible = 2 + not_square
    if not candidates:
        candidates = primerange(min_possible, max_possible)
    else:
        candidates = sorted([i for i in candidates
            if min_possible <= i < max_possible])
        if n%2 == 0:
            e = bit_scan1(n)
            candidates = [i for i in candidates if e%i == 0]
        if big:
            candidates = reversed(candidates)
        for e in candidates:
            r, ok = iroot(n, e)
            if ok:
                return int(r), e
        return False

    def _factors():
        rv = 2 + n % 2
        while True:
            yield rv
            rv = nextprime(rv)

    for fac, e in zip(_factors(), candidates):
        # see if there is a factor present
        if factor and n % fac == 0:
            # find what the potential power is
            e = remove(n, fac)[1]
            # if it's a trivial power we are done
            if e == 1:
                return False

            # maybe the e-th root of n is exact
            r, exact = iroot(n, e)
            if not exact:
                # Having a factor, we know that e is the maximal
                # possible value for a root of n.
                # If n = fac**e*m can be written as a perfect
                # power then see if m can be written as r**E where
                # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E
                m = n//fac**e
                rE = perfect_power(m, candidates=divisors(e, generator=True))
                if not rE:
                    return False
                else:
                    r, E = rE
                    r, e = fac**(e//E)*r, E
            if not big:
                e0 = primefactors(e)
                if e0[0] != e:
                    r, e = r**(e//e0[0]), e0[0]
            return int(r), e

        # Weed out downright impossible candidates
        if logn/e < 40:
            b = 2.0**(logn/e)
            if abs(int(b + 0.5) - b) > 0.01:
                continue

        # now see if the plausible e makes a perfect power
        r, exact = iroot(n, e)
        if exact:
            if big:
                m = perfect_power(r, big=big, factor=factor)
                if m:
                    r, e = m[0], e*m[1]
            return int(r), e

    return False


def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None):
    r"""
    Use Pollard's rho method to try to extract a nontrivial factor
    of ``n``. The returned factor may be a composite number. If no
    factor is found, ``None`` is returned.

    The algorithm generates pseudo-random values of x with a generator
    function, replacing x with F(x). If F is not supplied then the
    function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``.
    Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be
    supplied; the ``a`` will be ignored if F was supplied.

    The sequence of numbers generated by such functions generally have a
    a lead-up to some number and then loop around back to that number and
    begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader
    and loop look a bit like the Greek letter rho, and thus the name, 'rho'.

    For a given function, very different leader-loop values can be obtained
    so it is a good idea to allow for retries:

    >>> from sympy.ntheory.generate import cycle_length
    >>> n = 16843009
    >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n
    >>> for s in range(5):
    ...     print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s)))
    ...
    loop length = 2489; leader length =  43
    loop length =   78; leader length = 121
    loop length = 1482; leader length = 100
    loop length = 1482; leader length = 286
    loop length = 1482; leader length = 101

    Here is an explicit example where there is a three element leadup to
    a sequence of 3 numbers (11, 14, 4) that then repeat:

    >>> x=2
    >>> for i in range(9):
    ...     print(x)
    ...     x=(x**2+12)%17
    ...
    2
    16
    13
    11
    14
    4
    11
    14
    4
    >>> next(cycle_length(lambda x: (x**2+12)%17, 2))
    (3, 3)
    >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True))
    [2, 16, 13, 11, 14, 4]

    Instead of checking the differences of all generated values for a gcd
    with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd,
    2nd and 4th, 3rd and 6th until it has been detected that the loop has been
    traversed. Loops may be many thousands of steps long before rho finds a
    factor or reports failure. If ``max_steps`` is specified, the iteration
    is cancelled with a failure after the specified number of steps.

    Examples
    ========

    >>> from sympy import pollard_rho
    >>> n=16843009
    >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n
    >>> pollard_rho(n, F=F)
    257

    Use the default setting with a bad value of ``a`` and no retries:

    >>> pollard_rho(n, a=n-2, retries=0)

    If retries is > 0 then perhaps the problem will correct itself when
    new values are generated for a:

    >>> pollard_rho(n, a=n-2, retries=1)
    257

    References
    ==========

    .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
           A Computational Perspective", Springer, 2nd edition, 229-231

    """
    n = int(n)
    if n < 5:
        raise ValueError('pollard_rho should receive n > 4')
    randint = _randint(seed + retries)
    V = s
    for i in range(retries + 1):
        U = V
        if not F:
            F = lambda x: (pow(x, 2, n) + a) % n
        j = 0
        while 1:
            if max_steps and (j > max_steps):
                break
            j += 1
            U = F(U)
            V = F(F(V))  # V is 2x further along than U
            g = gcd(U - V, n)
            if g == 1:
                continue
            if g == n:
                break
            return int(g)
        V = randint(0, n - 1)
        a = randint(1, n - 3)  # for x**2 + a, a%n should not be 0 or -2
        F = None
    return None


def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
    """
    Use Pollard's p-1 method to try to extract a nontrivial factor
    of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.

    The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
    The default is 2.  If ``retries`` > 0 then if no factor is found after the
    first attempt, a new ``a`` will be generated randomly (using the ``seed``)
    and the process repeated.

    Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).

    A search is made for factors next to even numbers having a power smoothness
    less than ``B``. Choosing a larger B increases the likelihood of finding a
    larger factor but takes longer. Whether a factor of n is found or not
    depends on ``a`` and the power smoothness of the even number just less than
    the factor p (hence the name p - 1).

    Although some discussion of what constitutes a good ``a`` some
    descriptions are hard to interpret. At the modular.math site referenced
    below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
    for every prime power divisor of N. But consider the following:

        >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
        >>> n=257*1009
        >>> smoothness_p(n)
        (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])

    So we should (and can) find a root with B=16:

        >>> pollard_pm1(n, B=16, a=3)
        1009

    If we attempt to increase B to 256 we find that it does not work:

        >>> pollard_pm1(n, B=256)
        >>>

    But if the value of ``a`` is changed we find that only multiples of
    257 work, e.g.:

        >>> pollard_pm1(n, B=256, a=257)
        1009

    Checking different ``a`` values shows that all the ones that did not
    work had a gcd value not equal to ``n`` but equal to one of the
    factors:

        >>> from sympy import ilcm, igcd, factorint, Pow
        >>> M = 1
        >>> for i in range(2, 256):
        ...     M = ilcm(M, i)
        ...
        >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
        ...      igcd(pow(a, M, n) - 1, n) != n])
        {1009}

    But does aM % d for every divisor of n give 1?

        >>> aM = pow(255, M, n)
        >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
        [(257**1, 1), (1009**1, 1)]

    No, only one of them. So perhaps the principle is that a root will
    be found for a given value of B provided that:

    1) the power smoothness of the p - 1 value next to the root
       does not exceed B
    2) a**M % p != 1 for any of the divisors of n.

    By trying more than one ``a`` it is possible that one of them
    will yield a factor.

    Examples
    ========

    With the default smoothness bound, this number cannot be cracked:

        >>> from sympy.ntheory import pollard_pm1
        >>> pollard_pm1(21477639576571)

    Increasing the smoothness bound helps:

        >>> pollard_pm1(21477639576571, B=2000)
        4410317

    Looking at the smoothness of the factors of this number we find:

        >>> from sympy.ntheory.factor_ import smoothness_p, factorint
        >>> print(smoothness_p(21477639576571, visual=1))
        p**i=4410317**1 has p-1 B=1787, B-pow=1787
        p**i=4869863**1 has p-1 B=2434931, B-pow=2434931

    The B and B-pow are the same for the p - 1 factorizations of the divisors
    because those factorizations had a very large prime factor:

        >>> factorint(4410317 - 1)
        {2: 2, 617: 1, 1787: 1}
        >>> factorint(4869863-1)
        {2: 1, 2434931: 1}

    Note that until B reaches the B-pow value of 1787, the number is not cracked;

        >>> pollard_pm1(21477639576571, B=1786)
        >>> pollard_pm1(21477639576571, B=1787)
        4410317

    The B value has to do with the factors of the number next to the divisor,
    not the divisors themselves. A worst case scenario is that the number next
    to the factor p has a large prime divisisor or is a perfect power. If these
    conditions apply then the power-smoothness will be about p/2 or p. The more
    realistic is that there will be a large prime factor next to p requiring
    a B value on the order of p/2. Although primes may have been searched for
    up to this level, the p/2 is a factor of p - 1, something that we do not
    know. The modular.math reference below states that 15% of numbers in the
    range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
    will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
    percentages are nearly reversed...but in that range the simple trial
    division is quite fast.

    References
    ==========

    .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
           A Computational Perspective", Springer, 2nd edition, 236-238
    .. [2] https://web.archive.org/web/20150716201437/http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
    .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
    """

    n = int(n)
    if n < 4 or B < 3:
        raise ValueError('pollard_pm1 should receive n > 3 and B > 2')
    randint = _randint(seed + B)

    # computing a**lcm(1,2,3,..B) % n for B > 2
    # it looks weird, but it's right: primes run [2, B]
    # and the answer's not right until the loop is done.
    for i in range(retries + 1):
        aM = a
        for p in sieve.primerange(2, B + 1):
            e = int(math.log(B, p))
            aM = pow(aM, pow(p, e), n)
        g = gcd(aM - 1, n)
        if 1 < g < n:
            return int(g)

        # get a new a:
        # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1'
        # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will
        # give a zero, too, so we set the range as [2, n-2]. Some references
        # say 'a' should be coprime to n, but either will detect factors.
        a = randint(2, n - 2)


def _trial(factors, n, candidates, verbose=False):
    """
    Helper function for integer factorization. Trial factors ``n`
    against all integers given in the sequence ``candidates``
    and updates the dict ``factors`` in-place. Returns the reduced
    value of ``n`` and a flag indicating whether any factors were found.
    """
    if verbose:
        factors0 = list(factors.keys())
    nfactors = len(factors)
    for d in candidates:
        if n % d == 0:
            n, m = remove(n // d, d)
            factors[d] = m + 1
    if verbose:
        for k in sorted(set(factors).difference(set(factors0))):
            print(factor_msg % (k, factors[k]))
    return int(n), len(factors) != nfactors


def _check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
                       verbose, next_p):
    """
    Helper function for integer factorization. Checks if ``n``
    is a prime or a perfect power, and in those cases updates the factorization.
    """
    if verbose:
        print('Check for termination')
    if n == 1:
        if verbose:
            print(complete_msg)
        return True
    if n < next_p**2 or isprime(n):
        factors[int(n)] = 1
        if verbose:
            print(complete_msg)
        return True

    # since we've already been factoring there is no need to do
    # simultaneous factoring with the power check
    p = _perfect_power(n, next_p)
    if not p:
        return False
    base, exp = p
    if base < next_p**2 or isprime(base):
        factors[base] = exp
    else:
        facs = factorint(base, limit, use_trial, use_rho, use_pm1,
                         verbose=False)
        for b, e in facs.items():
            if verbose:
                print(factor_msg % (b, e))
            # int() can be removed when https://github.com/flintlib/python-flint/issues/92 is resolved
            factors[b] = int(exp*e)
    if verbose:
        print(complete_msg)
    return True


trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i"
trial_msg = "Trial division with primes [%i ... %i]"
rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i"
pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i"
ecm_msg = "Elliptic Curve with B1 bound %i, B2 bound %i, num_curves %i"
factor_msg = '\t%i ** %i'
fermat_msg = 'Close factors satisying Fermat condition found.'
complete_msg = 'Factorization is complete.'


def _factorint_small(factors, n, limit, fail_max, next_p=2):
    """
    Return the value of n and either a 0 (indicating that factorization up
    to the limit was complete) or else the next near-prime that would have
    been tested.

    Factoring stops if there are fail_max unsuccessful tests in a row.

    If factors of n were found they will be in the factors dictionary as
    {factor: multiplicity} and the returned value of n will have had those
    factors removed. The factors dictionary is modified in-place.

    """

    def done(n, d):
        """return n, d if the sqrt(n) was not reached yet, else
           n, 0 indicating that factoring is done.
        """
        if d*d <= n:
            return n, d
        return n, 0

    limit2 = limit**2
    threshold2 = min(n, limit2)

    if next_p < 3:
        if not n & 1:
            m = bit_scan1(n)
            factors[2] = m
            n >>= m
            threshold2 = min(n, limit2)
        next_p = 3
        if threshold2 < 9: # next_p**2 = 9
            return done(n, next_p)

    if next_p < 5:
        if not n % 3:
            n //= 3
            m = 1
            while not n % 3:
                n //= 3
                m += 1
                if m == 20:
                    n, mm = remove(n, 3)
                    m += mm
                    break
            factors[3] = m
            threshold2 = min(n, limit2)
        next_p = 5
        if threshold2 < 25: # next_p**2 = 25
            return done(n, next_p)

    # Because of the order of checks, starting from `min_p = 6k+5`,
    # useless checks are caused.
    # We want to calculate
    # next_p += [-1, -2, 3, 2, 1, 0][next_p % 6]
    p6 = next_p % 6
    next_p += (-1 if p6 < 2 else 5) - p6

    fails = 0
    while fails < fail_max:
        # next_p % 6 == 5
        if n % next_p:
            fails += 1
        else:
            n //= next_p
            m = 1
            while not n % next_p:
                n //= next_p
                m += 1
                if m == 20:
                    n, mm = remove(n, next_p)
                    m += mm
                    break
            factors[next_p] = m
            fails = 0
            threshold2 = min(n, limit2)
        next_p += 2
        if threshold2 < next_p**2:
            return done(n, next_p)

        # next_p % 6 == 1
        if n % next_p:
            fails += 1
        else:
            n //= next_p
            m = 1
            while not n % next_p:
                n //= next_p
                m += 1
                if m == 20:
                    n, mm = remove(n, next_p)
                    m += mm
                    break
            factors[next_p] = m
            fails = 0
            threshold2 = min(n, limit2)
        next_p += 4
        if threshold2 < next_p**2:
            return done(n, next_p)
    return done(n, next_p)


def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True,
              use_ecm=True, verbose=False, visual=None, multiple=False):
    r"""
    Given a positive integer ``n``, ``factorint(n)`` returns a dict containing
    the prime factors of ``n`` as keys and their respective multiplicities
    as values. For example:

    >>> from sympy.ntheory import factorint
    >>> factorint(2000)    # 2000 = (2**4) * (5**3)
    {2: 4, 5: 3}
    >>> factorint(65537)   # This number is prime
    {65537: 1}

    For input less than 2, factorint behaves as follows:

        - ``factorint(1)`` returns the empty factorization, ``{}``
        - ``factorint(0)`` returns ``{0:1}``
        - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n``

    Partial Factorization:

    If ``limit`` (> 3) is specified, the search is stopped after performing
    trial division up to (and including) the limit (or taking a
    corresponding number of rho/p-1 steps). This is useful if one has
    a large number and only is interested in finding small factors (if
    any). Note that setting a limit does not prevent larger factors
    from being found early; it simply means that the largest factor may
    be composite. Since checking for perfect power is relatively cheap, it is
    done regardless of the limit setting.

    This number, for example, has two small factors and a huge
    semi-prime factor that cannot be reduced easily:

    >>> from sympy.ntheory import isprime
    >>> a = 1407633717262338957430697921446883
    >>> f = factorint(a, limit=10000)
    >>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
    True
    >>> isprime(max(f))
    False

    This number has a small factor and a residual perfect power whose
    base is greater than the limit:

    >>> factorint(3*101**7, limit=5)
    {3: 1, 101: 7}

    List of Factors:

    If ``multiple`` is set to ``True`` then a list containing the
    prime factors including multiplicities is returned.

    >>> factorint(24, multiple=True)
    [2, 2, 2, 3]

    Visual Factorization:

    If ``visual`` is set to ``True``, then it will return a visual
    factorization of the integer.  For example:

    >>> from sympy import pprint
    >>> pprint(factorint(4200, visual=True))
     3  1  2  1
    2 *3 *5 *7

    Note that this is achieved by using the evaluate=False flag in Mul
    and Pow. If you do other manipulations with an expression where
    evaluate=False, it may evaluate.  Therefore, you should use the
    visual option only for visualization, and use the normal dictionary
    returned by visual=False if you want to perform operations on the
    factors.

    You can easily switch between the two forms by sending them back to
    factorint:

    >>> from sympy import Mul
    >>> regular = factorint(1764); regular
    {2: 2, 3: 2, 7: 2}
    >>> pprint(factorint(regular))
     2  2  2
    2 *3 *7

    >>> visual = factorint(1764, visual=True); pprint(visual)
     2  2  2
    2 *3 *7
    >>> print(factorint(visual))
    {2: 2, 3: 2, 7: 2}

    If you want to send a number to be factored in a partially factored form
    you can do so with a dictionary or unevaluated expression:

    >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
    {2: 10, 3: 3}
    >>> factorint(Mul(4, 12, evaluate=False))
    {2: 4, 3: 1}

    The table of the output logic is:

        ====== ====== ======= =======
                       Visual
        ------ ----------------------
        Input  True   False   other
        ====== ====== ======= =======
        dict    mul    dict    mul
        n       mul    dict    dict
        mul     mul    dict    dict
        ====== ====== ======= =======

    Notes
    =====

    Algorithm:

    The function switches between multiple algorithms. Trial division
    quickly finds small factors (of the order 1-5 digits), and finds
    all large factors if given enough time. The Pollard rho and p-1
    algorithms are used to find large factors ahead of time; they
    will often find factors of the order of 10 digits within a few
    seconds:

    >>> factors = factorint(12345678910111213141516)
    >>> for base, exp in sorted(factors.items()):
    ...     print('%s %s' % (base, exp))
    ...
    2 2
    2507191691 1
    1231026625769 1

    Any of these methods can optionally be disabled with the following
    boolean parameters:

        - ``use_trial``: Toggle use of trial division
        - ``use_rho``: Toggle use of Pollard's rho method
        - ``use_pm1``: Toggle use of Pollard's p-1 method

    ``factorint`` also periodically checks if the remaining part is
    a prime number or a perfect power, and in those cases stops.

    For unevaluated factorial, it uses Legendre's formula(theorem).


    If ``verbose`` is set to ``True``, detailed progress is printed.

    See Also
    ========

    smoothness, smoothness_p, divisors

    """
    if isinstance(n, Dict):
        n = dict(n)
    if multiple:
        fac = factorint(n, limit=limit, use_trial=use_trial,
                           use_rho=use_rho, use_pm1=use_pm1,
                           verbose=verbose, visual=False, multiple=False)
        factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
                               for p in sorted(fac)), [])
        return factorlist

    factordict = {}
    if visual and not isinstance(n, (Mul, dict)):
        factordict = factorint(n, limit=limit, use_trial=use_trial,
                               use_rho=use_rho, use_pm1=use_pm1,
                               verbose=verbose, visual=False)
    elif isinstance(n, Mul):
        factordict = {int(k): int(v) for k, v in
            n.as_powers_dict().items()}
    elif isinstance(n, dict):
        factordict = n
    if factordict and isinstance(n, (Mul, dict)):
        # check it
        for key in list(factordict.keys()):
            if isprime(key):
                continue
            e = factordict.pop(key)
            d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho,
                          use_pm1=use_pm1, verbose=verbose, visual=False)
            for k, v in d.items():
                if k in factordict:
                    factordict[k] += v*e
                else:
                    factordict[k] = v*e
    if visual or (type(n) is dict and
                  visual is not True and
                  visual is not False):
        if factordict == {}:
            return S.One
        if -1 in factordict:
            factordict.pop(-1)
            args = [S.NegativeOne]
        else:
            args = []
        args.extend([Pow(*i, evaluate=False)
                     for i in sorted(factordict.items())])
        return Mul(*args, evaluate=False)
    elif isinstance(n, (dict, Mul)):
        return factordict

    assert use_trial or use_rho or use_pm1 or use_ecm

    from sympy.functions.combinatorial.factorials import factorial
    if isinstance(n, factorial):
        x = as_int(n.args[0])
        if x >= 20:
            factors = {}
            m = 2 # to initialize the if condition below
            for p in sieve.primerange(2, x + 1):
                if m > 1:
                    m, q = 0, x // p
                    while q != 0:
                        m += q
                        q //= p
                factors[p] = m
            if factors and verbose:
                for k in sorted(factors):
                    print(factor_msg % (k, factors[k]))
            if verbose:
                print(complete_msg)
            return factors
        else:
            # if n < 20!, direct computation is faster
            # since it uses a lookup table
            n = n.func(x)

    n = as_int(n)
    if limit:
        limit = int(limit)
        use_ecm = False

    # special cases
    if n < 0:
        factors = factorint(
            -n, limit=limit, use_trial=use_trial, use_rho=use_rho,
            use_pm1=use_pm1, verbose=verbose, visual=False)
        factors[-1] = 1
        return factors

    if limit and limit < 2:
        if n == 1:
            return {}
        return {n: 1}
    elif n < 10:
        # doing this we are assured of getting a limit > 2
        # when we have to compute it later
        return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1},
                {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n]

    factors = {}

    # do simplistic factorization
    if verbose:
        sn = str(n)
        if len(sn) > 50:
            print('Factoring %s' % sn[:5] + \
                  '..(%i other digits)..' % (len(sn) - 10) + sn[-5:])
        else:
            print('Factoring', n)

    # this is the preliminary factorization for small factors
    # We want to guarantee that there are no small prime factors,
    # so we run even if `use_trial` is False.
    small = 2**15
    fail_max = 600
    small = min(small, limit or small)
    if verbose:
        print(trial_int_msg % (2, small, fail_max))
    n, next_p = _factorint_small(factors, n, small, fail_max)
    if factors and verbose:
        for k in sorted(factors):
            print(factor_msg % (k, factors[k]))
    if next_p == 0:
        if n > 1:
            factors[int(n)] = 1
        if verbose:
            print(complete_msg)
        return factors
    # first check if the simplistic run didn't finish
    # because of the limit and check for a perfect
    # power before exiting
    if limit and next_p > limit:
        if verbose:
            print('Exceeded limit:', limit)
        if _check_termination(factors, n, limit, use_trial,
                              use_rho, use_pm1, verbose, next_p):
            return factors
        if n > 1:
            factors[int(n)] = 1
        return factors
    if _check_termination(factors, n, limit, use_trial,
                          use_rho, use_pm1, verbose, next_p):
        return factors

    # continue with more advanced factorization methods
    # ...do a Fermat test since it's so easy and we need the
    # square root anyway. Finding 2 factors is easy if they are
    # "close enough." This is the big root equivalent of dividing by
    # 2, 3, 5.
    sqrt_n = isqrt(n)
    a = sqrt_n + 1
    # If `n % 4 == 1`, `a` must be odd for `a**2 - n` to be a square number.
    if (n % 4 == 1) ^ (a & 1):
        a += 1
    a2 = a**2
    b2 = a2 - n
    for _ in range(3):
        b, fermat = sqrtrem(b2)
        if not fermat:
            if verbose:
                print(fermat_msg)
            for r in [a - b, a + b]:
                facs = factorint(r, limit=limit, use_trial=use_trial,
                                 use_rho=use_rho, use_pm1=use_pm1,
                                 verbose=verbose)
                for k, v in facs.items():
                    factors[k] = factors.get(k, 0) + v
            if verbose:
                print(complete_msg)
            return factors
        b2 += (a + 1) << 2  # equiv to (a + 2)**2 - n
        a += 2

    # these are the limits for trial division which will
    # be attempted in parallel with pollard methods
    low, high = next_p, 2*next_p

    # add 1 to make sure limit is reached in primerange calls
    _limit = (limit or sqrt_n) + 1
    iteration = 0
    while 1:
        high_ = min(high, _limit)

        # Trial division
        if use_trial:
            if verbose:
                print(trial_msg % (low, high_))
            ps = sieve.primerange(low, high_)
            n, found_trial = _trial(factors, n, ps, verbose)
            next_p = high_
            if found_trial and _check_termination(factors, n, limit, use_trial,
                                                  use_rho, use_pm1, verbose, next_p):
                return factors
        else:
            found_trial = False

        if high > _limit:
            if verbose:
                print('Exceeded limit:', _limit)
            if n > 1:
                factors[int(n)] = 1
            if verbose:
                print(complete_msg)
            return factors

        # Only used advanced methods when no small factors were found
        if not found_trial:
            # Pollard p-1
            if use_pm1:
                if verbose:
                    print(pm1_msg % (low, high_))
                c = pollard_pm1(n, B=low, seed=high_)
                if c:
                    if c < next_p**2 or isprime(c):
                        ps = [c]
                    else:
                        ps = factorint(c, limit=limit,
                                       use_trial=use_trial,
                                       use_rho=use_rho,
                                       use_pm1=use_pm1,
                                       use_ecm=use_ecm,
                                       verbose=verbose)
                    n, _ = _trial(factors, n, ps, verbose=False)
                    if _check_termination(factors, n, limit, use_trial,
                                          use_rho, use_pm1, verbose, next_p):
                        return factors

            # Pollard rho
            if use_rho:
                if verbose:
                    print(rho_msg % (1, low, high_))
                c = pollard_rho(n, retries=1, max_steps=low, seed=high_)
                if c:
                    if c < next_p**2 or isprime(c):
                        ps = [c]
                    else:
                        ps = factorint(c, limit=limit,
                                       use_trial=use_trial,
                                       use_rho=use_rho,
                                       use_pm1=use_pm1,
                                       use_ecm=use_ecm,
                                       verbose=verbose)
                    n, _ = _trial(factors, n, ps, verbose=False)
                    if _check_termination(factors, n, limit, use_trial,
                                          use_rho, use_pm1, verbose, next_p):
                        return factors
        # Use subexponential algorithms if use_ecm
        # Use pollard algorithms for finding small factors for 3 iterations
        # if after small factors the number of digits of n >= 25 then use ecm
        iteration += 1
        if use_ecm and iteration >= 3 and num_digits(n) >= 24:
            break
        low, high = high, high*2

    B1 = 10000
    B2 = 100*B1
    num_curves = 50
    while(1):
        if verbose:
            print(ecm_msg % (B1, B2, num_curves))
        factor = _ecm_one_factor(n, B1, B2, num_curves, seed=B1)
        if factor:
            if factor < next_p**2 or isprime(factor):
                ps = [factor]
            else:
                ps = factorint(factor, limit=limit,
                           use_trial=use_trial,
                           use_rho=use_rho,
                           use_pm1=use_pm1,
                           use_ecm=use_ecm,
                           verbose=verbose)
            n, _ = _trial(factors, n, ps, verbose=False)
            if _check_termination(factors, n, limit, use_trial,
                                  use_rho, use_pm1, verbose, next_p):
                return factors
        B1 *= 5
        B2 = 100*B1
        num_curves *= 4


def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True,
              verbose=False, visual=None, multiple=False):
    r"""
    Given a Rational ``r``, ``factorrat(r)`` returns a dict containing
    the prime factors of ``r`` as keys and their respective multiplicities
    as values. For example:

    >>> from sympy import factorrat, S
    >>> factorrat(S(8)/9)    # 8/9 = (2**3) * (3**-2)
    {2: 3, 3: -2}
    >>> factorrat(S(-1)/987)    # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1)
    {-1: 1, 3: -1, 7: -1, 47: -1}

    Please see the docstring for ``factorint`` for detailed explanations
    and examples of the following keywords:

        - ``limit``: Integer limit up to which trial division is done
        - ``use_trial``: Toggle use of trial division
        - ``use_rho``: Toggle use of Pollard's rho method
        - ``use_pm1``: Toggle use of Pollard's p-1 method
        - ``verbose``: Toggle detailed printing of progress
        - ``multiple``: Toggle returning a list of factors or dict
        - ``visual``: Toggle product form of output
    """
    if multiple:
        fac = factorrat(rat, limit=limit, use_trial=use_trial,
                  use_rho=use_rho, use_pm1=use_pm1,
                  verbose=verbose, visual=False, multiple=False)
        factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
                               for p, _ in sorted(fac.items(),
                                                        key=lambda elem: elem[0]
                                                        if elem[1] > 0
                                                        else 1/elem[0])), [])
        return factorlist

    f = factorint(rat.p, limit=limit, use_trial=use_trial,
                  use_rho=use_rho, use_pm1=use_pm1,
                  verbose=verbose).copy()
    f = defaultdict(int, f)
    for p, e in factorint(rat.q, limit=limit,
                          use_trial=use_trial,
                          use_rho=use_rho,
                          use_pm1=use_pm1,
                          verbose=verbose).items():
        f[p] += -e

    if len(f) > 1 and 1 in f:
        del f[1]
    if not visual:
        return dict(f)
    else:
        if -1 in f:
            f.pop(-1)
            args = [S.NegativeOne]
        else:
            args = []
        args.extend([Pow(*i, evaluate=False)
                     for i in sorted(f.items())])
        return Mul(*args, evaluate=False)


def primefactors(n, limit=None, verbose=False, **kwargs):
    """Return a sorted list of n's prime factors, ignoring multiplicity
    and any composite factor that remains if the limit was set too low
    for complete factorization. Unlike factorint(), primefactors() does
    not return -1 or 0.

    Parameters
    ==========

    n : integer
    limit, verbose, **kwargs :
        Additional keyword arguments to be passed to ``factorint``.
        Since ``kwargs`` is new in version 1.13,
        ``limit`` and ``verbose`` are retained for compatibility purposes.

    Returns
    =======

    list(int) : List of prime numbers dividing ``n``

    Examples
    ========

    >>> from sympy.ntheory import primefactors, factorint, isprime
    >>> primefactors(6)
    [2, 3]
    >>> primefactors(-5)
    [5]

    >>> sorted(factorint(123456).items())
    [(2, 6), (3, 1), (643, 1)]
    >>> primefactors(123456)
    [2, 3, 643]

    >>> sorted(factorint(10000000001, limit=200).items())
    [(101, 1), (99009901, 1)]
    >>> isprime(99009901)
    False
    >>> primefactors(10000000001, limit=300)
    [101]

    See Also
    ========

    factorint, divisors

    """
    n = int(n)
    kwargs.update({"visual": None, "multiple": False,
                   "limit": limit, "verbose": verbose})
    factors = sorted(factorint(n=n, **kwargs).keys())
    # We want to calculate
    # s = [f for f in factors if isprime(f)]
    s = [f for f in factors[:-1:] if f not in [-1, 0, 1]]
    if factors and isprime(factors[-1]):
        s += [factors[-1]]
    return s


def _divisors(n, proper=False):
    """Helper function for divisors which generates the divisors.

    Parameters
    ==========

    n : int
        a nonnegative integer
    proper: bool
        If `True`, returns the generator that outputs only the proper divisor (i.e., excluding n).

    """
    if n <= 1:
        if not proper and n:
            yield 1
        return

    factordict = factorint(n)
    ps = sorted(factordict.keys())

    def rec_gen(n=0):
        if n == len(ps):
            yield 1
        else:
            pows = [1]
            for _ in range(factordict[ps[n]]):
                pows.append(pows[-1] * ps[n])
            yield from (p * q for q in rec_gen(n + 1) for p in pows)

    if proper:
        yield from (p for p in rec_gen() if p != n)
    else:
        yield from rec_gen()


def divisors(n, generator=False, proper=False):
    r"""
    Return all divisors of n sorted from 1..n by default.
    If generator is ``True`` an unordered generator is returned.

    The number of divisors of n can be quite large if there are many
    prime factors (counting repeated factors). If only the number of
    factors is desired use divisor_count(n).

    Examples
    ========

    >>> from sympy import divisors, divisor_count
    >>> divisors(24)
    [1, 2, 3, 4, 6, 8, 12, 24]
    >>> divisor_count(24)
    8

    >>> list(divisors(120, generator=True))
    [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120]

    Notes
    =====

    This is a slightly modified version of Tim Peters referenced at:
    https://stackoverflow.com/questions/1010381/python-factorization

    See Also
    ========

    primefactors, factorint, divisor_count
    """
    rv = _divisors(as_int(abs(n)), proper)
    return rv if generator else sorted(rv)


def divisor_count(n, modulus=1, proper=False):
    """
    Return the number of divisors of ``n``. If ``modulus`` is not 1 then only
    those that are divisible by ``modulus`` are counted. If ``proper`` is True
    then the divisor of ``n`` will not be counted.

    Examples
    ========

    >>> from sympy import divisor_count
    >>> divisor_count(6)
    4
    >>> divisor_count(6, 2)
    2
    >>> divisor_count(6, proper=True)
    3

    See Also
    ========

    factorint, divisors, totient, proper_divisor_count

    """

    if not modulus:
        return 0
    elif modulus != 1:
        n, r = divmod(n, modulus)
        if r:
            return 0
    if n == 0:
        return 0
    n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1])
    if n and proper:
        n -= 1
    return n


def proper_divisors(n, generator=False):
    """
    Return all divisors of n except n, sorted by default.
    If generator is ``True`` an unordered generator is returned.

    Examples
    ========

    >>> from sympy import proper_divisors, proper_divisor_count
    >>> proper_divisors(24)
    [1, 2, 3, 4, 6, 8, 12]
    >>> proper_divisor_count(24)
    7
    >>> list(proper_divisors(120, generator=True))
    [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60]

    See Also
    ========

    factorint, divisors, proper_divisor_count

    """
    return divisors(n, generator=generator, proper=True)


def proper_divisor_count(n, modulus=1):
    """
    Return the number of proper divisors of ``n``.

    Examples
    ========

    >>> from sympy import proper_divisor_count
    >>> proper_divisor_count(6)
    3
    >>> proper_divisor_count(6, modulus=2)
    1

    See Also
    ========

    divisors, proper_divisors, divisor_count

    """
    return divisor_count(n, modulus=modulus, proper=True)


def _udivisors(n):
    """Helper function for udivisors which generates the unitary divisors.

    Parameters
    ==========

    n : int
        a nonnegative integer

    """
    if n <= 1:
        if n == 1:
            yield 1
        return

    factorpows = [p**e for p, e in factorint(n).items()]
    # We want to calculate
    # yield from (math.prod(s) for s in powersets(factorpows))
    for i in range(2**len(factorpows)):
        d = 1
        for k in range(i.bit_length()):
            if i & 1:
                d *= factorpows[k]
            i >>= 1
        yield d


def udivisors(n, generator=False):
    r"""
    Return all unitary divisors of n sorted from 1..n by default.
    If generator is ``True`` an unordered generator is returned.

    The number of unitary divisors of n can be quite large if there are many
    prime factors. If only the number of unitary divisors is desired use
    udivisor_count(n).

    Examples
    ========

    >>> from sympy.ntheory.factor_ import udivisors, udivisor_count
    >>> udivisors(15)
    [1, 3, 5, 15]
    >>> udivisor_count(15)
    4

    >>> sorted(udivisors(120, generator=True))
    [1, 3, 5, 8, 15, 24, 40, 120]

    See Also
    ========

    primefactors, factorint, divisors, divisor_count, udivisor_count

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Unitary_divisor
    .. [2] https://mathworld.wolfram.com/UnitaryDivisor.html

    """
    rv = _udivisors(as_int(abs(n)))
    return rv if generator else sorted(rv)


def udivisor_count(n):
    """
    Return the number of unitary divisors of ``n``.

    Parameters
    ==========

    n : integer

    Examples
    ========

    >>> from sympy.ntheory.factor_ import udivisor_count
    >>> udivisor_count(120)
    8

    See Also
    ========

    factorint, divisors, udivisors, divisor_count, totient

    References
    ==========

    .. [1] https://mathworld.wolfram.com/UnitaryDivisorFunction.html

    """

    if n == 0:
        return 0
    return 2**len([p for p in factorint(n) if p > 1])


def _antidivisors(n):
    """Helper function for antidivisors which generates the antidivisors.

    Parameters
    ==========

    n : int
        a nonnegative integer

    """
    if n <= 2:
        return
    for d in _divisors(n):
        y = 2*d
        if n > y and n % y:
            yield y
    for d in _divisors(2*n-1):
        if n > d >= 2 and n % d:
            yield d
    for d in _divisors(2*n+1):
        if n > d >= 2 and n % d:
            yield d


def antidivisors(n, generator=False):
    r"""
    Return all antidivisors of n sorted from 1..n by default.

    Antidivisors [1]_ of n are numbers that do not divide n by the largest
    possible margin.  If generator is True an unordered generator is returned.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import antidivisors
    >>> antidivisors(24)
    [7, 16]

    >>> sorted(antidivisors(128, generator=True))
    [3, 5, 15, 17, 51, 85]

    See Also
    ========

    primefactors, factorint, divisors, divisor_count, antidivisor_count

    References
    ==========

    .. [1] definition is described in https://oeis.org/A066272/a066272a.html

    """
    rv = _antidivisors(as_int(abs(n)))
    return rv if generator else sorted(rv)


def antidivisor_count(n):
    """
    Return the number of antidivisors [1]_ of ``n``.

    Parameters
    ==========

    n : integer

    Examples
    ========

    >>> from sympy.ntheory.factor_ import antidivisor_count
    >>> antidivisor_count(13)
    4
    >>> antidivisor_count(27)
    5

    See Also
    ========

    factorint, divisors, antidivisors, divisor_count, totient

    References
    ==========

    .. [1] formula from https://oeis.org/A066272

    """

    n = as_int(abs(n))
    if n <= 2:
        return 0
    return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \
        divisor_count(n) - divisor_count(n, 2) - 5

@deprecated("""\
The `sympy.ntheory.factor_.totient` has been moved to `sympy.functions.combinatorial.numbers.totient`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def totient(n):
    r"""
    Calculate the Euler totient function phi(n)

    .. deprecated:: 1.13

        The ``totient`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.totient`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n
    that are relatively prime to n.

    Parameters
    ==========

    n : integer

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import totient
    >>> totient(1)
    1
    >>> totient(25)
    20
    >>> totient(45) == totient(5)*totient(9)
    True

    See Also
    ========

    divisor_count

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function
    .. [2] https://mathworld.wolfram.com/TotientFunction.html

    """
    from sympy.functions.combinatorial.numbers import totient as _totient
    return _totient(n)


@deprecated("""\
The `sympy.ntheory.factor_.reduced_totient` has been moved to `sympy.functions.combinatorial.numbers.reduced_totient`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def reduced_totient(n):
    r"""
    Calculate the Carmichael reduced totient function lambda(n)

    .. deprecated:: 1.13

        The ``reduced_totient`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.reduced_totient`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that
    `k^m \equiv 1 \mod n` for all k relatively prime to n.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import reduced_totient
    >>> reduced_totient(1)
    1
    >>> reduced_totient(8)
    2
    >>> reduced_totient(30)
    4

    See Also
    ========

    totient

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Carmichael_function
    .. [2] https://mathworld.wolfram.com/CarmichaelFunction.html

    """
    from sympy.functions.combinatorial.numbers import reduced_totient as _reduced_totient
    return _reduced_totient(n)


@deprecated("""\
The `sympy.ntheory.factor_.divisor_sigma` has been moved to `sympy.functions.combinatorial.numbers.divisor_sigma`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def divisor_sigma(n, k=1):
    r"""
    Calculate the divisor function `\sigma_k(n)` for positive integer n

    .. deprecated:: 1.13

        The ``divisor_sigma`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.divisor_sigma`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])``

    If n's prime factorization is:

    .. math ::
        n = \prod_{i=1}^\omega p_i^{m_i},

    then

    .. math ::
        \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots
        + p_i^{m_ik}).

    Parameters
    ==========

    n : integer

    k : integer, optional
        power of divisors in the sum

        for k = 0, 1:
        ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)``
        ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))``

        Default for k is 1.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import divisor_sigma
    >>> divisor_sigma(18, 0)
    6
    >>> divisor_sigma(39, 1)
    56
    >>> divisor_sigma(12, 2)
    210
    >>> divisor_sigma(37)
    38

    See Also
    ========

    divisor_count, totient, divisors, factorint

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Divisor_function

    """
    from sympy.functions.combinatorial.numbers import divisor_sigma as func_divisor_sigma
    return func_divisor_sigma(n, k)


def _divisor_sigma(n:int, k:int=1) -> int:
    r""" Calculate the divisor function `\sigma_k(n)` for positive integer n

    Parameters
    ==========

    n : int
        positive integer
    k : int
        nonnegative integer

    See Also
    ========

    sympy.functions.combinatorial.numbers.divisor_sigma

    """
    if k == 0:
        return math.prod(e + 1 for e in factorint(n).values())
    return math.prod((p**(k*(e + 1)) - 1)//(p**k - 1) for p, e in factorint(n).items())


def core(n, t=2):
    r"""
    Calculate core(n, t) = `core_t(n)` of a positive integer n

    ``core_2(n)`` is equal to the squarefree part of n

    If n's prime factorization is:

    .. math ::
        n = \prod_{i=1}^\omega p_i^{m_i},

    then

    .. math ::
        core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}.

    Parameters
    ==========

    n : integer

    t : integer
        core(n, t) calculates the t-th power free part of n

        ``core(n, 2)`` is the squarefree part of ``n``
        ``core(n, 3)`` is the cubefree part of ``n``

        Default for t is 2.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import core
    >>> core(24, 2)
    6
    >>> core(9424, 3)
    1178
    >>> core(379238)
    379238
    >>> core(15**11, 10)
    15

    See Also
    ========

    factorint, sympy.solvers.diophantine.diophantine.square_factor

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core

    """

    n = as_int(n)
    t = as_int(t)
    if n <= 0:
        raise ValueError("n must be a positive integer")
    elif t <= 1:
        raise ValueError("t must be >= 2")
    else:
        y = 1
        for p, e in factorint(n).items():
            y *= p**(e % t)
        return y


@deprecated("""\
The `sympy.ntheory.factor_.udivisor_sigma` has been moved to `sympy.functions.combinatorial.numbers.udivisor_sigma`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def udivisor_sigma(n, k=1):
    r"""
    Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n

    .. deprecated:: 1.13

        The ``udivisor_sigma`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.udivisor_sigma`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])``

    If n's prime factorization is:

    .. math ::
        n = \prod_{i=1}^\omega p_i^{m_i},

    then

    .. math ::
        \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}).

    Parameters
    ==========

    k : power of divisors in the sum

        for k = 0, 1:
        ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)``
        ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))``

        Default for k is 1.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import udivisor_sigma
    >>> udivisor_sigma(18, 0)
    4
    >>> udivisor_sigma(74, 1)
    114
    >>> udivisor_sigma(36, 3)
    47450
    >>> udivisor_sigma(111)
    152

    See Also
    ========

    divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma,
    factorint

    References
    ==========

    .. [1] https://mathworld.wolfram.com/UnitaryDivisorFunction.html

    """
    from sympy.functions.combinatorial.numbers import udivisor_sigma as _udivisor_sigma
    return _udivisor_sigma(n, k)


@deprecated("""\
The `sympy.ntheory.factor_.primenu` has been moved to `sympy.functions.combinatorial.numbers.primenu`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def primenu(n):
    r"""
    Calculate the number of distinct prime factors for a positive integer n.

    .. deprecated:: 1.13

        The ``primenu`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.primenu`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    If n's prime factorization is:

    .. math ::
        n = \prod_{i=1}^k p_i^{m_i},

    then ``primenu(n)`` or `\nu(n)` is:

    .. math ::
        \nu(n) = k.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import primenu
    >>> primenu(1)
    0
    >>> primenu(30)
    3

    See Also
    ========

    factorint

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PrimeFactor.html

    """
    from sympy.functions.combinatorial.numbers import primenu as _primenu
    return _primenu(n)


@deprecated("""\
The `sympy.ntheory.factor_.primeomega` has been moved to `sympy.functions.combinatorial.numbers.primeomega`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def primeomega(n):
    r"""
    Calculate the number of prime factors counting multiplicities for a
    positive integer n.

    .. deprecated:: 1.13

        The ``primeomega`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.primeomega`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    If n's prime factorization is:

    .. math ::
        n = \prod_{i=1}^k p_i^{m_i},

    then ``primeomega(n)``  or `\Omega(n)` is:

    .. math ::
        \Omega(n) = \sum_{i=1}^k m_i.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import primeomega
    >>> primeomega(1)
    0
    >>> primeomega(20)
    3

    See Also
    ========

    factorint

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PrimeFactor.html

    """
    from sympy.functions.combinatorial.numbers import primeomega as _primeomega
    return _primeomega(n)


def mersenne_prime_exponent(nth):
    """Returns the exponent ``i`` for the nth Mersenne prime (which
    has the form `2^i - 1`).

    Examples
    ========

    >>> from sympy.ntheory.factor_ import mersenne_prime_exponent
    >>> mersenne_prime_exponent(1)
    2
    >>> mersenne_prime_exponent(20)
    4423
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2")
    if n > 51:
        raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51")
    return MERSENNE_PRIME_EXPONENTS[n - 1]


def is_perfect(n):
    """Returns True if ``n`` is a perfect number, else False.

    A perfect number is equal to the sum of its positive, proper divisors.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import divisor_sigma
    >>> from sympy.ntheory.factor_ import is_perfect, divisors
    >>> is_perfect(20)
    False
    >>> is_perfect(6)
    True
    >>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1])
    True

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PerfectNumber.html
    .. [2] https://en.wikipedia.org/wiki/Perfect_number

    """
    n = as_int(n)
    if n < 1:
        return False
    if n % 2 == 0:
        m = (n.bit_length() + 1) >> 1
        if (1 << (m - 1)) * ((1 << m) - 1) != n:
            # Even perfect numbers must be of the form `2^{m-1}(2^m-1)`
            return False
        return m in MERSENNE_PRIME_EXPONENTS or is_mersenne_prime(2**m - 1)

    # n is an odd integer
    if n < 10**2000:  # https://www.lirmm.fr/~ochem/opn/
        return False
    if n % 105 == 0:  # not divis by 105
        return False
    if all(n % m != r for m, r in [(12, 1), (468, 117), (324, 81)]):
        return False
    # there are many criteria that the factor structure of n
    # must meet; since we will have to factor it to test the
    # structure we will have the factors and can then check
    # to see whether it is a perfect number or not. So we
    # skip the structure checks and go straight to the final
    # test below.
    result = abundance(n) == 0
    if result:
        raise ValueError(filldedent('''In 1888, Sylvester stated: "
            ...a prolonged meditation on the subject has satisfied
            me that the existence of any one such [odd perfect number]
            -- its escape, so to say, from the complex web of conditions
            which hem it in on all sides -- would be little short of a
            miracle." I guess SymPy just found that miracle and it
            factors like this: %s''' % factorint(n)))
    return result


def abundance(n):
    """Returns the difference between the sum of the positive
    proper divisors of a number and the number.

    Examples
    ========

    >>> from sympy.ntheory import abundance, is_perfect, is_abundant
    >>> abundance(6)
    0
    >>> is_perfect(6)
    True
    >>> abundance(10)
    -2
    >>> is_abundant(10)
    False
    """
    return _divisor_sigma(n) - 2 * n


def is_abundant(n):
    """Returns True if ``n`` is an abundant number, else False.

    A abundant number is smaller than the sum of its positive proper divisors.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import is_abundant
    >>> is_abundant(20)
    True
    >>> is_abundant(15)
    False

    References
    ==========

    .. [1] https://mathworld.wolfram.com/AbundantNumber.html

    """
    n = as_int(n)
    if is_perfect(n):
        return False
    return n % 6 == 0 or bool(abundance(n) > 0)


def is_deficient(n):
    """Returns True if ``n`` is a deficient number, else False.

    A deficient number is greater than the sum of its positive proper divisors.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import is_deficient
    >>> is_deficient(20)
    False
    >>> is_deficient(15)
    True

    References
    ==========

    .. [1] https://mathworld.wolfram.com/DeficientNumber.html

    """
    n = as_int(n)
    if is_perfect(n):
        return False
    return bool(abundance(n) < 0)


def is_amicable(m, n):
    """Returns True if the numbers `m` and `n` are "amicable", else False.

    Amicable numbers are two different numbers so related that the sum
    of the proper divisors of each is equal to that of the other.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import divisor_sigma
    >>> from sympy.ntheory.factor_ import is_amicable
    >>> is_amicable(220, 284)
    True
    >>> divisor_sigma(220) == divisor_sigma(284)
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Amicable_numbers

    """
    return m != n and m + n == _divisor_sigma(m) == _divisor_sigma(n)


def is_carmichael(n):
    """ Returns True if the numbers `n` is Carmichael number, else False.

    Parameters
    ==========

    n : Integer

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Carmichael_number
    .. [2] https://oeis.org/A002997

    """
    if n < 561:
        return False
    return n % 2 and not isprime(n) and \
           all(e == 1 and (n - 1) % (p - 1) == 0 for p, e in factorint(n).items())


def find_carmichael_numbers_in_range(x, y):
    """ Returns a list of the number of Carmichael in the range

    See Also
    ========

    is_carmichael

    """
    if 0 <= x <= y:
        if x % 2 == 0:
            return [i for i in range(x + 1, y, 2) if is_carmichael(i)]
        else:
            return [i for i in range(x, y, 2) if is_carmichael(i)]
    else:
        raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y')


def find_first_n_carmichaels(n):
    """ Returns the first n Carmichael numbers.

    Parameters
    ==========

    n : Integer

    See Also
    ========

    is_carmichael

    """
    i = 561
    carmichaels = []

    while len(carmichaels) < n:
        if is_carmichael(i):
            carmichaels.append(i)
        i += 2

    return carmichaels


def dra(n, b):
    """
    Returns the additive digital root of a natural number ``n`` in base ``b``
    which is a single digit value obtained by an iterative process of summing
    digits, on each iteration using the result from the previous iteration to
    compute a digit sum.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import dra
    >>> dra(3110, 12)
    8

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Digital_root

    """

    num = abs(as_int(n))
    b = as_int(b)
    if b <= 1:
        raise ValueError("Base should be an integer greater than 1")

    if num == 0:
        return 0

    return (1 + (num - 1) % (b - 1))


def drm(n, b):
    """
    Returns the multiplicative digital root of a natural number ``n`` in a given
    base ``b`` which is a single digit value obtained by an iterative process of
    multiplying digits, on each iteration using the result from the previous
    iteration to compute the digit multiplication.

    Examples
    ========

    >>> from sympy.ntheory.factor_ import drm
    >>> drm(9876, 10)
    0

    >>> drm(49, 10)
    8

    References
    ==========

    .. [1] https://mathworld.wolfram.com/MultiplicativeDigitalRoot.html

    """

    n = abs(as_int(n))
    b = as_int(b)
    if b <= 1:
        raise ValueError("Base should be an integer greater than 1")
    while n > b:
        mul = 1
        while n > 1:
            n, r = divmod(n, b)
            if r == 0:
                return 0
            mul *= r
        n = mul
    return n