File size: 2,756 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Number theory module (primes, etc)
"""

from .generate import nextprime, prevprime, prime, primepi, primerange, \
    randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi
from .primetest import isprime, is_gaussian_prime, is_mersenne_prime
from .factor_ import divisors, proper_divisors, factorint, multiplicity, \
    multiplicity_in_factorial, perfect_power, pollard_pm1, pollard_rho, \
    primefactors, totient, \
    divisor_count, proper_divisor_count, divisor_sigma, factorrat, \
    reduced_totient, primenu, primeomega, mersenne_prime_exponent, \
    is_perfect, is_abundant, is_deficient, is_amicable, is_carmichael, \
    abundance, dra, drm

from .partitions_ import npartitions
from .residue_ntheory import is_primitive_root, is_quad_residue, \
    legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, \
    primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, \
    discrete_log, quadratic_congruence, polynomial_congruence
from .multinomial import binomial_coefficients, binomial_coefficients_list, \
    multinomial_coefficients
from .continued_fraction import continued_fraction_periodic, \
    continued_fraction_iterator, continued_fraction_reduce, \
    continued_fraction_convergents, continued_fraction
from .digits import count_digits, digits, is_palindromic
from .egyptian_fraction import egyptian_fraction
from .ecm import ecm
from .qs import qs
__all__ = [
    'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
    'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',

    'isprime', 'is_gaussian_prime', 'is_mersenne_prime',


    'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power',
    'pollard_pm1', 'pollard_rho', 'primefactors', 'totient',
    'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat',
    'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent',
    'is_perfect', 'is_abundant', 'is_deficient', 'is_amicable',
    'is_carmichael', 'abundance', 'dra', 'drm', 'multiplicity_in_factorial',

    'npartitions',

    'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
    'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
    'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
    'mobius', 'discrete_log', 'quadratic_congruence', 'polynomial_congruence',

    'binomial_coefficients', 'binomial_coefficients_list',
    'multinomial_coefficients',

    'continued_fraction_periodic', 'continued_fraction_iterator',
    'continued_fraction_reduce', 'continued_fraction_convergents',
    'continued_fraction',

    'digits',
    'count_digits',
    'is_palindromic',

    'egyptian_fraction',

    'ecm',

    'qs',
]