File size: 4,616 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from itertools import product

from sympy.core.relational import (Equality, Unequality)
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import (Matrix, eye, zeros)
from sympy.matrices.immutable import ImmutableMatrix
from sympy.matrices import SparseMatrix
from sympy.matrices.immutable import \
    ImmutableDenseMatrix, ImmutableSparseMatrix
from sympy.abc import x, y
from sympy.testing.pytest import raises

IM = ImmutableDenseMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
ISM = ImmutableSparseMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
ieye = ImmutableDenseMatrix(eye(3))


def test_creation():
    assert IM.shape == ISM.shape == (3, 3)
    assert IM[1, 2] == ISM[1, 2] == 6
    assert IM[2, 2] == ISM[2, 2] == 9


def test_immutability():
    with raises(TypeError):
        IM[2, 2] = 5
    with raises(TypeError):
        ISM[2, 2] = 5


def test_slicing():
    assert IM[1, :] == ImmutableDenseMatrix([[4, 5, 6]])
    assert IM[:2, :2] == ImmutableDenseMatrix([[1, 2], [4, 5]])
    assert ISM[1, :] == ImmutableSparseMatrix([[4, 5, 6]])
    assert ISM[:2, :2] == ImmutableSparseMatrix([[1, 2], [4, 5]])


def test_subs():
    A = ImmutableMatrix([[1, 2], [3, 4]])
    B = ImmutableMatrix([[1, 2], [x, 4]])
    C = ImmutableMatrix([[-x, x*y], [-(x + y), y**2]])
    assert B.subs(x, 3) == A
    assert (x*B).subs(x, 3) == 3*A
    assert (x*eye(2) + B).subs(x, 3) == 3*eye(2) + A
    assert C.subs([[x, -1], [y, -2]]) == A
    assert C.subs([(x, -1), (y, -2)]) == A
    assert C.subs({x: -1, y: -2}) == A
    assert C.subs({x: y - 1, y: x - 1}, simultaneous=True) == \
        ImmutableMatrix([[1 - y, (x - 1)*(y - 1)], [2 - x - y, (x - 1)**2]])


def test_as_immutable():
    data = [[1, 2], [3, 4]]
    X = Matrix(data)
    assert sympify(X) == X.as_immutable() == ImmutableMatrix(data)

    data = {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4}
    X = SparseMatrix(2, 2, data)
    assert sympify(X) == X.as_immutable() == ImmutableSparseMatrix(2, 2, data)


def test_function_return_types():
    # Lets ensure that decompositions of immutable matrices remain immutable
    # I.e. do MatrixBase methods return the correct class?
    X = ImmutableMatrix([[1, 2], [3, 4]])
    Y = ImmutableMatrix([[1], [0]])
    q, r = X.QRdecomposition()
    assert (type(q), type(r)) == (ImmutableMatrix, ImmutableMatrix)

    assert type(X.LUsolve(Y)) == ImmutableMatrix
    assert type(X.QRsolve(Y)) == ImmutableMatrix

    X = ImmutableMatrix([[5, 2], [2, 7]])
    assert X.T == X
    assert X.is_symmetric
    assert type(X.cholesky()) == ImmutableMatrix
    L, D = X.LDLdecomposition()
    assert (type(L), type(D)) == (ImmutableMatrix, ImmutableMatrix)

    X = ImmutableMatrix([[1, 2], [2, 1]])
    assert X.is_diagonalizable()
    assert X.det() == -3
    assert X.norm(2) == 3

    assert type(X.eigenvects()[0][2][0]) == ImmutableMatrix

    assert type(zeros(3, 3).as_immutable().nullspace()[0]) == ImmutableMatrix

    X = ImmutableMatrix([[1, 0], [2, 1]])
    assert type(X.lower_triangular_solve(Y)) == ImmutableMatrix
    assert type(X.T.upper_triangular_solve(Y)) == ImmutableMatrix

    assert type(X.minor_submatrix(0, 0)) == ImmutableMatrix

# issue 6279
# https://github.com/sympy/sympy/issues/6279
# Test that Immutable _op_ Immutable => Immutable and not MatExpr


def test_immutable_evaluation():
    X = ImmutableMatrix(eye(3))
    A = ImmutableMatrix(3, 3, range(9))
    assert isinstance(X + A, ImmutableMatrix)
    assert isinstance(X * A, ImmutableMatrix)
    assert isinstance(X * 2, ImmutableMatrix)
    assert isinstance(2 * X, ImmutableMatrix)
    assert isinstance(A**2, ImmutableMatrix)


def test_deterimant():
    assert ImmutableMatrix(4, 4, lambda i, j: i + j).det() == 0


def test_Equality():
    assert Equality(IM, IM) is S.true
    assert Unequality(IM, IM) is S.false
    assert Equality(IM, IM.subs(1, 2)) is S.false
    assert Unequality(IM, IM.subs(1, 2)) is S.true
    assert Equality(IM, 2) is S.false
    assert Unequality(IM, 2) is S.true
    M = ImmutableMatrix([x, y])
    assert Equality(M, IM) is S.false
    assert Unequality(M, IM) is S.true
    assert Equality(M, M.subs(x, 2)).subs(x, 2) is S.true
    assert Unequality(M, M.subs(x, 2)).subs(x, 2) is S.false
    assert Equality(M, M.subs(x, 2)).subs(x, 3) is S.false
    assert Unequality(M, M.subs(x, 2)).subs(x, 3) is S.true


def test_integrate():
    intIM = integrate(IM, x)
    assert intIM.shape == IM.shape
    assert all(intIM[i, j] == (1 + j + 3*i)*x for i, j in
                product(range(3), range(3)))