File size: 6,496 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from sympy.core.add import Add
from sympy.core.expr import unchanged
from sympy.core.mul import Mul
from sympy.core.symbol import symbols
from sympy.core.relational import Eq
from sympy.concrete.summations import Sum
from sympy.functions.elementary.complexes import im, re
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.special import (
    ZeroMatrix, GenericZeroMatrix, Identity, GenericIdentity, OneMatrix)
from sympy.matrices.expressions.matmul import MatMul
from sympy.testing.pytest import raises


def test_zero_matrix_creation():
    assert unchanged(ZeroMatrix, 2, 2)
    assert unchanged(ZeroMatrix, 0, 0)
    raises(ValueError, lambda: ZeroMatrix(-1, 2))
    raises(ValueError, lambda: ZeroMatrix(2.0, 2))
    raises(ValueError, lambda: ZeroMatrix(2j, 2))
    raises(ValueError, lambda: ZeroMatrix(2, -1))
    raises(ValueError, lambda: ZeroMatrix(2, 2.0))
    raises(ValueError, lambda: ZeroMatrix(2, 2j))

    n = symbols('n')
    assert unchanged(ZeroMatrix, n, n)
    n = symbols('n', integer=False)
    raises(ValueError, lambda: ZeroMatrix(n, n))
    n = symbols('n', negative=True)
    raises(ValueError, lambda: ZeroMatrix(n, n))


def test_generic_zero_matrix():
    z = GenericZeroMatrix()
    n = symbols('n', integer=True)
    A = MatrixSymbol("A", n, n)

    assert z == z
    assert z != A
    assert A != z

    assert z.is_ZeroMatrix

    raises(TypeError, lambda: z.shape)
    raises(TypeError, lambda: z.rows)
    raises(TypeError, lambda: z.cols)

    assert MatAdd() == z
    assert MatAdd(z, A) == MatAdd(A)
    # Make sure it is hashable
    hash(z)


def test_identity_matrix_creation():
    assert Identity(2)
    assert Identity(0)
    raises(ValueError, lambda: Identity(-1))
    raises(ValueError, lambda: Identity(2.0))
    raises(ValueError, lambda: Identity(2j))

    n = symbols('n')
    assert Identity(n)
    n = symbols('n', integer=False)
    raises(ValueError, lambda: Identity(n))
    n = symbols('n', negative=True)
    raises(ValueError, lambda: Identity(n))


def test_generic_identity():
    I = GenericIdentity()
    n = symbols('n', integer=True)
    A = MatrixSymbol("A", n, n)

    assert I == I
    assert I != A
    assert A != I

    assert I.is_Identity
    assert I**-1 == I

    raises(TypeError, lambda: I.shape)
    raises(TypeError, lambda: I.rows)
    raises(TypeError, lambda: I.cols)

    assert MatMul() == I
    assert MatMul(I, A) == MatMul(A)
    # Make sure it is hashable
    hash(I)


def test_one_matrix_creation():
    assert OneMatrix(2, 2)
    assert OneMatrix(0, 0)
    assert Eq(OneMatrix(1, 1), Identity(1))
    raises(ValueError, lambda: OneMatrix(-1, 2))
    raises(ValueError, lambda: OneMatrix(2.0, 2))
    raises(ValueError, lambda: OneMatrix(2j, 2))
    raises(ValueError, lambda: OneMatrix(2, -1))
    raises(ValueError, lambda: OneMatrix(2, 2.0))
    raises(ValueError, lambda: OneMatrix(2, 2j))

    n = symbols('n')
    assert OneMatrix(n, n)
    n = symbols('n', integer=False)
    raises(ValueError, lambda: OneMatrix(n, n))
    n = symbols('n', negative=True)
    raises(ValueError, lambda: OneMatrix(n, n))


def test_ZeroMatrix():
    n, m = symbols('n m', integer=True)
    A = MatrixSymbol('A', n, m)
    Z = ZeroMatrix(n, m)

    assert A + Z == A
    assert A*Z.T == ZeroMatrix(n, n)
    assert Z*A.T == ZeroMatrix(n, n)
    assert A - A == ZeroMatrix(*A.shape)

    assert Z

    assert Z.transpose() == ZeroMatrix(m, n)
    assert Z.conjugate() == Z
    assert Z.adjoint() == ZeroMatrix(m, n)
    assert re(Z) == Z
    assert im(Z) == Z

    assert ZeroMatrix(n, n)**0 == Identity(n)
    assert ZeroMatrix(3, 3).as_explicit() == ImmutableDenseMatrix.zeros(3, 3)


def test_ZeroMatrix_doit():
    n = symbols('n', integer=True)
    Znn = ZeroMatrix(Add(n, n, evaluate=False), n)
    assert isinstance(Znn.rows, Add)
    assert Znn.doit() == ZeroMatrix(2*n, n)
    assert isinstance(Znn.doit().rows, Mul)


def test_OneMatrix():
    n, m = symbols('n m', integer=True)
    A = MatrixSymbol('A', n, m)
    U = OneMatrix(n, m)

    assert U.shape == (n, m)
    assert isinstance(A + U, Add)
    assert U.transpose() == OneMatrix(m, n)
    assert U.conjugate() == U
    assert U.adjoint() == OneMatrix(m, n)
    assert re(U) == U
    assert im(U) == ZeroMatrix(n, m)

    assert OneMatrix(n, n) ** 0 == Identity(n)

    U = OneMatrix(n, n)
    assert U[1, 2] == 1

    U = OneMatrix(2, 3)
    assert U.as_explicit() == ImmutableDenseMatrix.ones(2, 3)


def test_OneMatrix_doit():
    n = symbols('n', integer=True)
    Unn = OneMatrix(Add(n, n, evaluate=False), n)
    assert isinstance(Unn.rows, Add)
    assert Unn.doit() == OneMatrix(2 * n, n)
    assert isinstance(Unn.doit().rows, Mul)


def test_OneMatrix_mul():
    n, m, k = symbols('n m k', integer=True)
    w = MatrixSymbol('w', n, 1)
    assert OneMatrix(n, m) * OneMatrix(m, k) == OneMatrix(n, k) * m
    assert w * OneMatrix(1, 1) == w
    assert OneMatrix(1, 1) * w.T == w.T


def test_Identity():
    n, m = symbols('n m', integer=True)
    A = MatrixSymbol('A', n, m)
    i, j = symbols('i j')

    In = Identity(n)
    Im = Identity(m)

    assert A*Im == A
    assert In*A == A

    assert In.transpose() == In
    assert In.inverse() == In
    assert In.conjugate() == In
    assert In.adjoint() == In
    assert re(In) == In
    assert im(In) == ZeroMatrix(n, n)

    assert In[i, j] != 0
    assert Sum(In[i, j], (i, 0, n-1), (j, 0, n-1)).subs(n,3).doit() == 3
    assert Sum(Sum(In[i, j], (i, 0, n-1)), (j, 0, n-1)).subs(n,3).doit() == 3

    # If range exceeds the limit `(0, n-1)`, do not remove `Piecewise`:
    expr = Sum(In[i, j], (i, 0, n-1))
    assert expr.doit() == 1
    expr = Sum(In[i, j], (i, 0, n-2))
    assert expr.doit().dummy_eq(
        Piecewise(
            (1, (j >= 0) & (j <= n-2)),
            (0, True)
        )
    )
    expr = Sum(In[i, j], (i, 1, n-1))
    assert expr.doit().dummy_eq(
        Piecewise(
            (1, (j >= 1) & (j <= n-1)),
            (0, True)
        )
    )
    assert Identity(3).as_explicit() == ImmutableDenseMatrix.eye(3)


def test_Identity_doit():
    n = symbols('n', integer=True)
    Inn = Identity(Add(n, n, evaluate=False))
    assert isinstance(Inn.rows, Add)
    assert Inn.doit() == Identity(2*n)
    assert isinstance(Inn.doit().rows, Mul)