File size: 5,366 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from sympy.core.mod import Mod
from sympy.core.numbers import I
from sympy.core.symbol import symbols
from sympy.functions.elementary.integers import floor
from sympy.matrices.dense import (Matrix, eye)
from sympy.matrices import MatrixSymbol, Identity
from sympy.matrices.expressions import det, trace

from sympy.matrices.expressions.kronecker import (KroneckerProduct,
                                                  kronecker_product,
                                                  combine_kronecker)


mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
mat2 = Matrix([[2 * I, 3], [4 * I, 2]])

i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
Z = MatrixSymbol('Z', n, n)
W = MatrixSymbol('W', m, m)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, k)


def test_KroneckerProduct():
    assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
    assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
    assert KroneckerProduct(A, C).shape == (n*m, m*k)
    assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
    assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity


def test_KroneckerProduct_identity():
    assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
    assert KroneckerProduct(eye(2), eye(3)) == eye(6)


def test_KroneckerProduct_explicit():
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    kp = KroneckerProduct(X, Y)
    assert kp.shape == (4, 4)
    assert kp.as_explicit() == Matrix(
        [
            [X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
            [X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
            [X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
            [X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
        ]
    )


def test_tensor_product_adjoint():
    assert KroneckerProduct(I*A, B).adjoint() == \
        -I*KroneckerProduct(A.adjoint(), B.adjoint())
    assert KroneckerProduct(mat1, mat2).adjoint() == \
        kronecker_product(mat1.adjoint(), mat2.adjoint())


def test_tensor_product_conjugate():
    assert KroneckerProduct(I*A, B).conjugate() == \
        -I*KroneckerProduct(A.conjugate(), B.conjugate())
    assert KroneckerProduct(mat1, mat2).conjugate() == \
        kronecker_product(mat1.conjugate(), mat2.conjugate())


def test_tensor_product_transpose():
    assert KroneckerProduct(I*A, B).transpose() == \
        I*KroneckerProduct(A.transpose(), B.transpose())
    assert KroneckerProduct(mat1, mat2).transpose() == \
        kronecker_product(mat1.transpose(), mat2.transpose())


def test_KroneckerProduct_is_associative():
    assert kronecker_product(A, kronecker_product(
        B, C)) == kronecker_product(kronecker_product(A, B), C)
    assert kronecker_product(A, kronecker_product(
        B, C)) == KroneckerProduct(A, B, C)


def test_KroneckerProduct_is_bilinear():
    assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
    assert kronecker_product(A, x*B) == x*kronecker_product(A, B)


def test_KroneckerProduct_determinant():
    kp = kronecker_product(W, Z)
    assert det(kp) == det(W)**n * det(Z)**m


def test_KroneckerProduct_trace():
    kp = kronecker_product(W, Z)
    assert trace(kp) == trace(W)*trace(Z)


def test_KroneckerProduct_isnt_commutative():
    assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
    assert KroneckerProduct(A, B).is_commutative is False


def test_KroneckerProduct_extracts_commutative_part():
    assert kronecker_product(x * A, 2 * B) == x * \
        2 * KroneckerProduct(A, B)


def test_KroneckerProduct_inverse():
    kp = kronecker_product(W, Z)
    assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())


def test_KroneckerProduct_combine_add():
    kp1 = kronecker_product(A, B)
    kp2 = kronecker_product(C, W)
    assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)


def test_KroneckerProduct_combine_mul():
    X = MatrixSymbol('X', m, n)
    Y = MatrixSymbol('Y', m, n)
    kp1 = kronecker_product(A, X)
    kp2 = kronecker_product(B, Y)
    assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)


def test_KroneckerProduct_combine_pow():
    X = MatrixSymbol('X', n, n)
    Y = MatrixSymbol('Y', n, n)
    assert combine_kronecker(KroneckerProduct(
        X, Y)**x) == KroneckerProduct(X**x, Y**x)
    assert combine_kronecker(x * KroneckerProduct(X, Y)
                             ** 2) == x * KroneckerProduct(X**2, Y**2)
    assert combine_kronecker(
        x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
    # cannot simplify because of non-square arguments to kronecker product:
    assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m


def test_KroneckerProduct_expand():
    X = MatrixSymbol('X', n, n)
    Y = MatrixSymbol('Y', n, n)

    assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
        KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
        KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)

def test_KroneckerProduct_entry():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', o, p)

    assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]