File size: 12,038 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from sympy.concrete.summations import Sum
from sympy.core.symbol import symbols, Symbol, Dummy
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions.matexpr import (MatrixSymbol,
    MatrixExpr, MatrixElement)
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.special import (ZeroMatrix, Identity,
    OneMatrix)
from sympy.matrices.expressions.trace import Trace, trace
from sympy.matrices.immutable import ImmutableMatrix
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.testing.pytest import XFAIL, raises

k, l, m, n = symbols('k l m n', integer=True)
i, j = symbols('i j', integer=True)

W = MatrixSymbol('W', k, l)
X = MatrixSymbol('X', l, m)
Y = MatrixSymbol('Y', l, m)
Z = MatrixSymbol('Z', m, n)

X1 = MatrixSymbol('X1', m, m)
X2 = MatrixSymbol('X2', m, m)
X3 = MatrixSymbol('X3', m, m)
X4 = MatrixSymbol('X4', m, m)

A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
x = MatrixSymbol('x', 1, 2)
y = MatrixSymbol('x', 2, 1)


def test_symbolic_indexing():
    x12 = X[1, 2]
    assert all(s in str(x12) for s in ['1', '2', X.name])
    # We don't care about the exact form of this.  We do want to make sure
    # that all of these features are present


def test_add_index():
    assert (X + Y)[i, j] == X[i, j] + Y[i, j]


def test_mul_index():
    assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
    assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
    X = MatrixSymbol('X', n, m)
    Y = MatrixSymbol('Y', m, k)

    result = (X*Y)[4,2]
    expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
    assert result.args[0].dummy_eq(expected.args[0], i)
    assert result.args[1][1:] == expected.args[1][1:]


def test_pow_index():
    Q = MatPow(A, 2)
    assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
    n = symbols("n")
    Q2 = A**n
    assert Q2[0, 0] == 2*(
            -sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
            4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
        )**n * \
        A[0, 1]*A[1, 0]/(
            (sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
                  A[1, 1]**2) + A[0, 0] - A[1, 1])*
            sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
        ) - 2*(
            sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
            4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
        )**n * A[0, 1]*A[1, 0]/(
            (-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
            A[1, 1]**2) + A[0, 0] - A[1, 1])*
            sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
        )


def test_transpose_index():
    assert X.T[i, j] == X[j, i]


def test_Identity_index():
    I = Identity(3)
    assert I[0, 0] == I[1, 1] == I[2, 2] == 1
    assert I[1, 0] == I[0, 1] == I[2, 1] == 0
    assert I[i, 0].delta_range == (0, 2)
    raises(IndexError, lambda: I[3, 3])


def test_block_index():
    I = Identity(3)
    Z = ZeroMatrix(3, 3)
    B = BlockMatrix([[I, I], [I, I]])
    e3 = ImmutableMatrix(eye(3))
    BB = BlockMatrix([[e3, e3], [e3, e3]])
    assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
    assert B[4, 3] == B[5, 1] == 0

    BB = BlockMatrix([[e3, e3], [e3, e3]])
    assert B.as_explicit() == BB.as_explicit()

    BI = BlockMatrix([[I, Z], [Z, I]])

    assert BI.as_explicit().equals(eye(6))


def test_block_index_symbolic():
    # Note that these matrices may be zero-sized and indices may be negative, which causes
    # all naive simplifications given in the comments to be invalid
    A1 = MatrixSymbol('A1', n, k)
    A2 = MatrixSymbol('A2', n, l)
    A3 = MatrixSymbol('A3', m, k)
    A4 = MatrixSymbol('A4', m, l)
    A = BlockMatrix([[A1, A2], [A3, A4]])
    assert A[0, 0] == MatrixElement(A, 0, 0)  # Cannot be A1[0, 0]
    assert A[n - 1, k - 1] == A1[n - 1, k - 1]
    assert A[n, k] == A4[0, 0]
    assert A[n + m - 1, 0] == MatrixElement(A, n + m - 1, 0)  # Cannot be A3[m - 1, 0]
    assert A[0, k + l - 1] == MatrixElement(A, 0, k + l - 1)  # Cannot be A2[0, l - 1]
    assert A[n + m - 1, k + l - 1] == MatrixElement(A, n + m - 1, k + l - 1)  # Cannot be A4[m - 1, l - 1]
    assert A[i, j] == MatrixElement(A, i, j)
    assert A[n + i, k + j] == MatrixElement(A, n + i, k + j)  # Cannot be A4[i, j]
    assert A[n - i - 1, k - j - 1] == MatrixElement(A, n - i - 1, k - j - 1)  # Cannot be A1[n - i - 1, k - j - 1]


def test_block_index_symbolic_nonzero():
    # All invalid simplifications from test_block_index_symbolic() that become valid if all
    # matrices have nonzero size and all indices are nonnegative
    k, l, m, n = symbols('k l m n', integer=True, positive=True)
    i, j = symbols('i j', integer=True, nonnegative=True)
    A1 = MatrixSymbol('A1', n, k)
    A2 = MatrixSymbol('A2', n, l)
    A3 = MatrixSymbol('A3', m, k)
    A4 = MatrixSymbol('A4', m, l)
    A = BlockMatrix([[A1, A2], [A3, A4]])
    assert A[0, 0] == A1[0, 0]
    assert A[n + m - 1, 0] == A3[m - 1, 0]
    assert A[0, k + l - 1] == A2[0, l - 1]
    assert A[n + m - 1, k + l - 1] == A4[m - 1, l - 1]
    assert A[i, j] == MatrixElement(A, i, j)
    assert A[n + i, k + j] == A4[i, j]
    assert A[n - i - 1, k - j - 1] == A1[n - i - 1, k - j - 1]
    assert A[2 * n, 2 * k] == A4[n, k]


def test_block_index_large():
    n, m, k = symbols('n m k', integer=True, positive=True)
    i = symbols('i', integer=True, nonnegative=True)
    A1 = MatrixSymbol('A1', n, n)
    A2 = MatrixSymbol('A2', n, m)
    A3 = MatrixSymbol('A3', n, k)
    A4 = MatrixSymbol('A4', m, n)
    A5 = MatrixSymbol('A5', m, m)
    A6 = MatrixSymbol('A6', m, k)
    A7 = MatrixSymbol('A7', k, n)
    A8 = MatrixSymbol('A8', k, m)
    A9 = MatrixSymbol('A9', k, k)
    A = BlockMatrix([[A1, A2, A3], [A4, A5, A6], [A7, A8, A9]])
    assert A[n + i, n + i] == MatrixElement(A, n + i, n + i)


@XFAIL
def test_block_index_symbolic_fail():
    # To make this work, symbolic matrix dimensions would need to be somehow assumed nonnegative
    # even if the symbols aren't specified as such.  Then 2 * n < n would correctly evaluate to
    # False in BlockMatrix._entry()
    A1 = MatrixSymbol('A1', n, 1)
    A2 = MatrixSymbol('A2', m, 1)
    A = BlockMatrix([[A1], [A2]])
    assert A[2 * n, 0] == A2[n, 0]


def test_slicing():
    A.as_explicit()[0, :]  # does not raise an error


def test_errors():
    raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
    raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])


def test_matrix_expression_to_indices():
    i, j = symbols("i, j")
    i1, i2, i3 = symbols("i_1:4")

    def replace_dummies(expr):
        repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
        return expr.xreplace(repl)

    expr = W*X*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = Z.T*X.T*W.T
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr

    expr = W*X*Z + W*Y*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = 2*W*X*Z + 3*W*Y*Z
    assert replace_dummies(expr._entry(i, j)) == \
        2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = W*(X + Y)*Z
    assert replace_dummies(expr._entry(i, j)) == \
            Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = A*B**2*A
    #assert replace_dummies(expr._entry(i, j)) == \
    #        Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))

    # Check that different dummies are used in sub-multiplications:
    expr = (X1*X2 + X2*X1)*X3
    assert replace_dummies(expr._entry(i, j)) == \
           Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
               i1, j], (i1, 0, m - 1))


def test_matrix_expression_from_index_summation():
    from sympy.abc import a,b,c,d
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    w1 = MatrixSymbol("w1", k, 1)

    i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)

    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
    expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == OneMatrix(1, k)*A*OneMatrix(k, 1) + OneMatrix(1, k)*B*OneMatrix(k, 1)
    expr = Sum(A[a, b]**2, (a, 0, k - 1), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == Trace(A * A.T)
    expr = Sum(A[a, b]**3, (a, 0, k - 1), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == Trace(HadamardPower(A.T, 2) * A)
    expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
    expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
    expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A**3
    expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A**2*B

    # Parse the trace of a matrix:

    expr = Sum(A[a, a], (a, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, None) == trace(A)
    expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C

    # Check wrong sum ranges (should raise an exception):

    ## Case 1: 0 to m instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
    ## Case 2: 1 to m-1 instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))

    # Parse nested sums:
    expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B*C

    # Test Kronecker delta:
    expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B

    expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, m) == ArrayTensorProduct(A.T, A)

    # Test numbered indices:
    expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*w1, i1, 0)

    expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)