File size: 16,541 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from sympy.matrices.expressions.trace import Trace
from sympy.testing.pytest import raises, slow
from sympy.matrices.expressions.blockmatrix import (
    block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
    BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
    blockcut, reblock_2x2, deblock)
from sympy.matrices.expressions import (
    MatrixSymbol, Identity, trace, det, ZeroMatrix, OneMatrix)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.exceptions import NonInvertibleMatrixError
from sympy.matrices import (
    Matrix, ImmutableMatrix, ImmutableSparseMatrix, zeros)
from sympy.core import Tuple, Expr, S, Function
from sympy.core.symbol import Symbol, symbols
from sympy.functions import transpose, im, re

i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
G = MatrixSymbol('G', n, n)
H = MatrixSymbol('H', n, n)
b1 = BlockMatrix([[G, H]])
b2 = BlockMatrix([[G], [H]])

def test_bc_matmul():
    assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])

def test_bc_matadd():
    assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
            BlockMatrix([[G+H, H+H]])

def test_bc_transpose():
    assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
            BlockMatrix([[A.T, C.T], [B.T, D.T]])

def test_bc_dist_diag():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', m, m)
    C = MatrixSymbol('C', l, l)
    X = BlockDiagMatrix(A, B, C)

    assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))

def test_block_plus_ident():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Z = MatrixSymbol('Z', n + m, n + m)
    assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
            BlockDiagMatrix(Identity(n), Identity(m)) + X + Z

def test_BlockMatrix():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, k)
    C = MatrixSymbol('C', l, m)
    D = MatrixSymbol('D', l, k)
    M = MatrixSymbol('M', m + k, p)
    N = MatrixSymbol('N', l + n, k + m)
    X = BlockMatrix(Matrix([[A, B], [C, D]]))

    assert X.__class__(*X.args) == X

    # block_collapse does nothing on normal inputs
    E = MatrixSymbol('E', n, m)
    assert block_collapse(A + 2*E) == A + 2*E
    F = MatrixSymbol('F', m, m)
    assert block_collapse(E.T*A*F) == E.T*A*F

    assert X.shape == (l + n, k + m)
    assert X.blockshape == (2, 2)
    assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
    assert transpose(X).shape == X.shape[::-1]

    # Test that BlockMatrices and MatrixSymbols can still mix
    assert (X*M).is_MatMul
    assert X._blockmul(M).is_MatMul
    assert (X*M).shape == (n + l, p)
    assert (X + N).is_MatAdd
    assert X._blockadd(N).is_MatAdd
    assert (X + N).shape == X.shape

    E = MatrixSymbol('E', m, 1)
    F = MatrixSymbol('F', k, 1)

    Y = BlockMatrix(Matrix([[E], [F]]))

    assert (X*Y).shape == (l + n, 1)
    assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
    assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F

    # block_collapse passes down into container objects, transposes, and inverse
    assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
    assert block_collapse(Tuple(X*Y, 2*X)) == (
        block_collapse(X*Y), block_collapse(2*X))

    # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
    Ab = BlockMatrix([[A]])
    Z = MatrixSymbol('Z', *A.shape)
    assert block_collapse(Ab + Z) == A + Z

def test_block_collapse_explicit_matrices():
    A = Matrix([[1, 2], [3, 4]])
    assert block_collapse(BlockMatrix([[A]])) == A

    A = ImmutableSparseMatrix([[1, 2], [3, 4]])
    assert block_collapse(BlockMatrix([[A]])) == A

def test_issue_17624():
    a = MatrixSymbol("a", 2, 2)
    z = ZeroMatrix(2, 2)
    b = BlockMatrix([[a, z], [z, z]])
    assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
    assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])

def test_issue_18618():
    A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    assert A == Matrix(BlockDiagMatrix(A))

def test_BlockMatrix_trace():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])
    assert trace(X) == trace(A) + trace(D)
    assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0

def test_BlockMatrix_Determinant():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])
    from sympy.assumptions.ask import Q
    from sympy.assumptions.assume import assuming
    with assuming(Q.invertible(A)):
        assert det(X) == det(A) * det(X.schur('A'))

    assert isinstance(det(X), Expr)
    assert det(BlockMatrix([A])) == det(A)
    assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0

def test_squareBlockMatrix():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Y = BlockMatrix([[A]])

    assert X.is_square

    Q = X + Identity(m + n)
    assert (block_collapse(Q) ==
        BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))

    assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
    assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul

    assert block_collapse(Y.I) == A.I

    assert isinstance(X.inverse(), Inverse)

    assert not X.is_Identity

    Z = BlockMatrix([[Identity(n), B], [C, D]])
    assert not Z.is_Identity


def test_BlockMatrix_2x2_inverse_symbolic():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, k - m)
    C = MatrixSymbol('C', k - n, m)
    D = MatrixSymbol('D', k - n, k - m)
    X = BlockMatrix([[A, B], [C, D]])
    assert X.is_square and X.shape == (k, k)
    assert isinstance(block_collapse(X.I), Inverse)  # Can't invert when none of the blocks is square

    # test code path where only A is invertible
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = ZeroMatrix(m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
        [-X.schur('A').I * C * A.I, X.schur('A').I],
    ])

    # test code path where only B is invertible
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, n)
    C = ZeroMatrix(m, m)
    D = MatrixSymbol('D', m, n)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [-X.schur('B').I * D * B.I, X.schur('B').I],
        [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
    ])

    # test code path where only C is invertible
    A = MatrixSymbol('A', n, m)
    B = ZeroMatrix(n, n)
    C = MatrixSymbol('C', m, m)
    D = MatrixSymbol('D', m, n)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
        [X.schur('C').I, -X.schur('C').I * A * C.I],
    ])

    # test code path where only D is invertible
    A = ZeroMatrix(n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [X.schur('D').I, -X.schur('D').I * B * D.I],
        [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
    ])


def test_BlockMatrix_2x2_inverse_numeric():
    """Test 2x2 block matrix inversion numerically for all 4 formulas"""
    M = Matrix([[1, 2], [3, 4]])
    # rank deficient matrices that have full rank when two of them combined
    D1 = Matrix([[1, 2], [2, 4]])
    D2 = Matrix([[1, 3], [3, 9]])
    D3 = Matrix([[1, 4], [4, 16]])
    assert D1.rank() == D2.rank() == D3.rank() == 1
    assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2

    # Only A is invertible
    K = BlockMatrix([[M, D1], [D2, D3]])
    assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
    # Only B is invertible
    K = BlockMatrix([[D1, M], [D2, D3]])
    assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
    # Only C is invertible
    K = BlockMatrix([[D1, D2], [M, D3]])
    assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
    # Only D is invertible
    K = BlockMatrix([[D1, D2], [D3, M]])
    assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()


@slow
def test_BlockMatrix_3x3_symbolic():
    # Only test one of these, instead of all permutations, because it's slow
    rowblocksizes = (n, m, k)
    colblocksizes = (m, k, n)
    K = BlockMatrix([
        [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
        for rows in rowblocksizes
    ])
    collapse = block_collapse(K.I)
    assert isinstance(collapse, BlockMatrix)


def test_BlockDiagMatrix():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', m, m)
    C = MatrixSymbol('C', l, l)
    M = MatrixSymbol('M', n + m + l, n + m + l)

    X = BlockDiagMatrix(A, B, C)
    Y = BlockDiagMatrix(A, 2*B, 3*C)

    assert X.blocks[1, 1] == B
    assert X.shape == (n + m + l, n + m + l)
    assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
            for i in range(3) for j in range(3))
    assert X.__class__(*X.args) == X
    assert X.get_diag_blocks() == (A, B, C)

    assert isinstance(block_collapse(X.I * X), Identity)

    assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
    assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
    #XXX: should be == ??
    assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
    assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
    assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)

    # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
    assert (X*(2*M)).is_MatMul
    assert (X + (2*M)).is_MatAdd

    assert (X._blockmul(M)).is_MatMul
    assert (X._blockadd(M)).is_MatAdd

def test_BlockDiagMatrix_nonsquare():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', k, l)
    X = BlockDiagMatrix(A, B)
    assert X.shape == (n + k, m + l)
    assert X.shape == (n + k, m + l)
    assert X.rowblocksizes == [n, k]
    assert X.colblocksizes == [m, l]
    C = MatrixSymbol('C', n, m)
    D = MatrixSymbol('D', k, l)
    Y = BlockDiagMatrix(C, D)
    assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
    assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
    raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())

def test_BlockDiagMatrix_determinant():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', m, m)
    assert det(BlockDiagMatrix()) == 1
    assert det(BlockDiagMatrix(A)) == det(A)
    assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)

    # non-square blocks
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', n, m)
    assert det(BlockDiagMatrix(C, D)) == 0

def test_BlockDiagMatrix_trace():
    assert trace(BlockDiagMatrix()) == 0
    assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
    A = MatrixSymbol('A', n, n)
    assert trace(BlockDiagMatrix(A)) == trace(A)
    B = MatrixSymbol('B', m, m)
    assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)

    # non-square blocks
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', n, m)
    assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)

def test_BlockDiagMatrix_transpose():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', k, l)
    assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
    assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
    assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)

def test_issue_2460():
    bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
    bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
    assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))

def test_blockcut():
    A = MatrixSymbol('A', n, m)
    B = blockcut(A, (n/2, n/2), (m/2, m/2))
    assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
                             [A[n/2:, :m/2], A[n/2:, m/2:]]])

    M = ImmutableMatrix(4, 4, range(16))
    B = blockcut(M, (2, 2), (2, 2))
    assert M == ImmutableMatrix(B)

    B = blockcut(M, (1, 3), (2, 2))
    assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])

def test_reblock_2x2():
    B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
                            for j in range(3)]
                            for i in range(3)])
    assert B.blocks.shape == (3, 3)

    BB = reblock_2x2(B)
    assert BB.blocks.shape == (2, 2)

    assert B.shape == BB.shape
    assert B.as_explicit() == BB.as_explicit()

def test_deblock():
    B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
                    for j in range(4)]
                    for i in range(4)])

    assert deblock(reblock_2x2(B)) == B

def test_block_collapse_type():
    bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
    bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))

    assert bm1.T.__class__ == BlockDiagMatrix
    assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
    assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
    assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
    assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
    assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix

def test_invalid_block_matrix():
    raises(ValueError, lambda: BlockMatrix([
        [Identity(2), Identity(5)],
    ]))
    raises(ValueError, lambda: BlockMatrix([
        [Identity(n), Identity(m)],
    ]))
    raises(ValueError, lambda: BlockMatrix([
        [ZeroMatrix(n, n), ZeroMatrix(n, n)],
        [ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
    ]))
    raises(ValueError, lambda: BlockMatrix([
        [ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
        [ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
    ]))

def test_block_lu_decomposition():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])

    #LDU decomposition
    L, D, U = X.LDUdecomposition()
    assert block_collapse(L*D*U) == X

    #UDL decomposition
    U, D, L = X.UDLdecomposition()
    assert block_collapse(U*D*L) == X

    #LU decomposition
    L, U = X.LUdecomposition()
    assert block_collapse(L*U) == X

def test_issue_21866():
    n  = 10
    I  = Identity(n)
    O  = ZeroMatrix(n, n)
    A  = BlockMatrix([[  I,  O,  O,  O ],
                      [  O,  I,  O,  O ],
                      [  O,  O,  I,  O ],
                      [  I,  O,  O,  I ]])
    Ainv = block_collapse(A.inv())
    AinvT = BlockMatrix([[  I,  O,  O,  O ],
                      [  O,  I,  O,  O ],
                      [  O,  O,  I,  O ],
                      [  -I,  O,  O,  I ]])
    assert Ainv == AinvT


def test_adjoint_and_special_matrices():
    A = Identity(3)
    B = OneMatrix(3, 2)
    C = ZeroMatrix(2, 3)
    D = Identity(2)
    X = BlockMatrix([[A, B], [C, D]])
    X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
    assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
    assert re(X) == X
    assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
    assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])


def test_block_matrix_derivative():
    x = symbols('x')
    A = Matrix(3, 3, [Function(f'a{i}')(x) for i in range(9)])
    bc = BlockMatrix([[A[:2, :2], A[:2, 2]], [A[2, :2], A[2:, 2]]])
    assert Matrix(bc.diff(x)) - A.diff(x) == zeros(3, 3)


def test_transpose_inverse_commute():
    n = Symbol('n')
    I = Identity(n)
    Z = ZeroMatrix(n, n)
    A = BlockMatrix([[I, Z], [Z, I]])

    assert block_collapse(A.transpose().inverse()) == A
    assert block_collapse(A.inverse().transpose()) == A

    assert block_collapse(MatPow(A.transpose(), -2)) == MatPow(A, -2)
    assert block_collapse(MatPow(A, -2).transpose()) == MatPow(A, -2)