Spaces:
Running
Running
File size: 16,541 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from sympy.matrices.expressions.trace import Trace
from sympy.testing.pytest import raises, slow
from sympy.matrices.expressions.blockmatrix import (
block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
blockcut, reblock_2x2, deblock)
from sympy.matrices.expressions import (
MatrixSymbol, Identity, trace, det, ZeroMatrix, OneMatrix)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.exceptions import NonInvertibleMatrixError
from sympy.matrices import (
Matrix, ImmutableMatrix, ImmutableSparseMatrix, zeros)
from sympy.core import Tuple, Expr, S, Function
from sympy.core.symbol import Symbol, symbols
from sympy.functions import transpose, im, re
i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
G = MatrixSymbol('G', n, n)
H = MatrixSymbol('H', n, n)
b1 = BlockMatrix([[G, H]])
b2 = BlockMatrix([[G], [H]])
def test_bc_matmul():
assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
def test_bc_matadd():
assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
BlockMatrix([[G+H, H+H]])
def test_bc_transpose():
assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
BlockMatrix([[A.T, C.T], [B.T, D.T]])
def test_bc_dist_diag():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
C = MatrixSymbol('C', l, l)
X = BlockDiagMatrix(A, B, C)
assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
def test_block_plus_ident():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
Z = MatrixSymbol('Z', n + m, n + m)
assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
def test_BlockMatrix():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, k)
C = MatrixSymbol('C', l, m)
D = MatrixSymbol('D', l, k)
M = MatrixSymbol('M', m + k, p)
N = MatrixSymbol('N', l + n, k + m)
X = BlockMatrix(Matrix([[A, B], [C, D]]))
assert X.__class__(*X.args) == X
# block_collapse does nothing on normal inputs
E = MatrixSymbol('E', n, m)
assert block_collapse(A + 2*E) == A + 2*E
F = MatrixSymbol('F', m, m)
assert block_collapse(E.T*A*F) == E.T*A*F
assert X.shape == (l + n, k + m)
assert X.blockshape == (2, 2)
assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
assert transpose(X).shape == X.shape[::-1]
# Test that BlockMatrices and MatrixSymbols can still mix
assert (X*M).is_MatMul
assert X._blockmul(M).is_MatMul
assert (X*M).shape == (n + l, p)
assert (X + N).is_MatAdd
assert X._blockadd(N).is_MatAdd
assert (X + N).shape == X.shape
E = MatrixSymbol('E', m, 1)
F = MatrixSymbol('F', k, 1)
Y = BlockMatrix(Matrix([[E], [F]]))
assert (X*Y).shape == (l + n, 1)
assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
# block_collapse passes down into container objects, transposes, and inverse
assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
assert block_collapse(Tuple(X*Y, 2*X)) == (
block_collapse(X*Y), block_collapse(2*X))
# Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
Ab = BlockMatrix([[A]])
Z = MatrixSymbol('Z', *A.shape)
assert block_collapse(Ab + Z) == A + Z
def test_block_collapse_explicit_matrices():
A = Matrix([[1, 2], [3, 4]])
assert block_collapse(BlockMatrix([[A]])) == A
A = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert block_collapse(BlockMatrix([[A]])) == A
def test_issue_17624():
a = MatrixSymbol("a", 2, 2)
z = ZeroMatrix(2, 2)
b = BlockMatrix([[a, z], [z, z]])
assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
def test_issue_18618():
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
assert A == Matrix(BlockDiagMatrix(A))
def test_BlockMatrix_trace():
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
X = BlockMatrix([[A, B], [C, D]])
assert trace(X) == trace(A) + trace(D)
assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_BlockMatrix_Determinant():
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
X = BlockMatrix([[A, B], [C, D]])
from sympy.assumptions.ask import Q
from sympy.assumptions.assume import assuming
with assuming(Q.invertible(A)):
assert det(X) == det(A) * det(X.schur('A'))
assert isinstance(det(X), Expr)
assert det(BlockMatrix([A])) == det(A)
assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_squareBlockMatrix():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
Y = BlockMatrix([[A]])
assert X.is_square
Q = X + Identity(m + n)
assert (block_collapse(Q) ==
BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
assert block_collapse(Y.I) == A.I
assert isinstance(X.inverse(), Inverse)
assert not X.is_Identity
Z = BlockMatrix([[Identity(n), B], [C, D]])
assert not Z.is_Identity
def test_BlockMatrix_2x2_inverse_symbolic():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, k - m)
C = MatrixSymbol('C', k - n, m)
D = MatrixSymbol('D', k - n, k - m)
X = BlockMatrix([[A, B], [C, D]])
assert X.is_square and X.shape == (k, k)
assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
# test code path where only A is invertible
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = ZeroMatrix(m, m)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
[-X.schur('A').I * C * A.I, X.schur('A').I],
])
# test code path where only B is invertible
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, n)
C = ZeroMatrix(m, m)
D = MatrixSymbol('D', m, n)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[-X.schur('B').I * D * B.I, X.schur('B').I],
[B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
])
# test code path where only C is invertible
A = MatrixSymbol('A', n, m)
B = ZeroMatrix(n, n)
C = MatrixSymbol('C', m, m)
D = MatrixSymbol('D', m, n)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
[X.schur('C').I, -X.schur('C').I * A * C.I],
])
# test code path where only D is invertible
A = ZeroMatrix(n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[X.schur('D').I, -X.schur('D').I * B * D.I],
[-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
])
def test_BlockMatrix_2x2_inverse_numeric():
"""Test 2x2 block matrix inversion numerically for all 4 formulas"""
M = Matrix([[1, 2], [3, 4]])
# rank deficient matrices that have full rank when two of them combined
D1 = Matrix([[1, 2], [2, 4]])
D2 = Matrix([[1, 3], [3, 9]])
D3 = Matrix([[1, 4], [4, 16]])
assert D1.rank() == D2.rank() == D3.rank() == 1
assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
# Only A is invertible
K = BlockMatrix([[M, D1], [D2, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only B is invertible
K = BlockMatrix([[D1, M], [D2, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only C is invertible
K = BlockMatrix([[D1, D2], [M, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only D is invertible
K = BlockMatrix([[D1, D2], [D3, M]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
@slow
def test_BlockMatrix_3x3_symbolic():
# Only test one of these, instead of all permutations, because it's slow
rowblocksizes = (n, m, k)
colblocksizes = (m, k, n)
K = BlockMatrix([
[MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
for rows in rowblocksizes
])
collapse = block_collapse(K.I)
assert isinstance(collapse, BlockMatrix)
def test_BlockDiagMatrix():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
C = MatrixSymbol('C', l, l)
M = MatrixSymbol('M', n + m + l, n + m + l)
X = BlockDiagMatrix(A, B, C)
Y = BlockDiagMatrix(A, 2*B, 3*C)
assert X.blocks[1, 1] == B
assert X.shape == (n + m + l, n + m + l)
assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
for i in range(3) for j in range(3))
assert X.__class__(*X.args) == X
assert X.get_diag_blocks() == (A, B, C)
assert isinstance(block_collapse(X.I * X), Identity)
assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
#XXX: should be == ??
assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
# Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
assert (X*(2*M)).is_MatMul
assert (X + (2*M)).is_MatAdd
assert (X._blockmul(M)).is_MatMul
assert (X._blockadd(M)).is_MatAdd
def test_BlockDiagMatrix_nonsquare():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', k, l)
X = BlockDiagMatrix(A, B)
assert X.shape == (n + k, m + l)
assert X.shape == (n + k, m + l)
assert X.rowblocksizes == [n, k]
assert X.colblocksizes == [m, l]
C = MatrixSymbol('C', n, m)
D = MatrixSymbol('D', k, l)
Y = BlockDiagMatrix(C, D)
assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
def test_BlockDiagMatrix_determinant():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
assert det(BlockDiagMatrix()) == 1
assert det(BlockDiagMatrix(A)) == det(A)
assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
# non-square blocks
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', n, m)
assert det(BlockDiagMatrix(C, D)) == 0
def test_BlockDiagMatrix_trace():
assert trace(BlockDiagMatrix()) == 0
assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
A = MatrixSymbol('A', n, n)
assert trace(BlockDiagMatrix(A)) == trace(A)
B = MatrixSymbol('B', m, m)
assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
# non-square blocks
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', n, m)
assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
def test_BlockDiagMatrix_transpose():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', k, l)
assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
def test_issue_2460():
bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
def test_blockcut():
A = MatrixSymbol('A', n, m)
B = blockcut(A, (n/2, n/2), (m/2, m/2))
assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
[A[n/2:, :m/2], A[n/2:, m/2:]]])
M = ImmutableMatrix(4, 4, range(16))
B = blockcut(M, (2, 2), (2, 2))
assert M == ImmutableMatrix(B)
B = blockcut(M, (1, 3), (2, 2))
assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
def test_reblock_2x2():
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
for j in range(3)]
for i in range(3)])
assert B.blocks.shape == (3, 3)
BB = reblock_2x2(B)
assert BB.blocks.shape == (2, 2)
assert B.shape == BB.shape
assert B.as_explicit() == BB.as_explicit()
def test_deblock():
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
for j in range(4)]
for i in range(4)])
assert deblock(reblock_2x2(B)) == B
def test_block_collapse_type():
bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
assert bm1.T.__class__ == BlockDiagMatrix
assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
def test_invalid_block_matrix():
raises(ValueError, lambda: BlockMatrix([
[Identity(2), Identity(5)],
]))
raises(ValueError, lambda: BlockMatrix([
[Identity(n), Identity(m)],
]))
raises(ValueError, lambda: BlockMatrix([
[ZeroMatrix(n, n), ZeroMatrix(n, n)],
[ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
]))
raises(ValueError, lambda: BlockMatrix([
[ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
[ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
]))
def test_block_lu_decomposition():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
#LDU decomposition
L, D, U = X.LDUdecomposition()
assert block_collapse(L*D*U) == X
#UDL decomposition
U, D, L = X.UDLdecomposition()
assert block_collapse(U*D*L) == X
#LU decomposition
L, U = X.LUdecomposition()
assert block_collapse(L*U) == X
def test_issue_21866():
n = 10
I = Identity(n)
O = ZeroMatrix(n, n)
A = BlockMatrix([[ I, O, O, O ],
[ O, I, O, O ],
[ O, O, I, O ],
[ I, O, O, I ]])
Ainv = block_collapse(A.inv())
AinvT = BlockMatrix([[ I, O, O, O ],
[ O, I, O, O ],
[ O, O, I, O ],
[ -I, O, O, I ]])
assert Ainv == AinvT
def test_adjoint_and_special_matrices():
A = Identity(3)
B = OneMatrix(3, 2)
C = ZeroMatrix(2, 3)
D = Identity(2)
X = BlockMatrix([[A, B], [C, D]])
X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
assert re(X) == X
assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
def test_block_matrix_derivative():
x = symbols('x')
A = Matrix(3, 3, [Function(f'a{i}')(x) for i in range(9)])
bc = BlockMatrix([[A[:2, :2], A[:2, 2]], [A[2, :2], A[2:, 2]]])
assert Matrix(bc.diff(x)) - A.diff(x) == zeros(3, 3)
def test_transpose_inverse_commute():
n = Symbol('n')
I = Identity(n)
Z = ZeroMatrix(n, n)
A = BlockMatrix([[I, Z], [Z, I]])
assert block_collapse(A.transpose().inverse()) == A
assert block_collapse(A.inverse().transpose()) == A
assert block_collapse(MatPow(A.transpose(), -2)) == MatPow(A, -2)
assert block_collapse(MatPow(A, -2).transpose()) == MatPow(A, -2)
|