Spaces:
Running
Running
File size: 31,855 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
from sympy.assumptions.ask import (Q, ask)
from sympy.core import Basic, Add, Mul, S
from sympy.core.sympify import _sympify
from sympy.functions import adjoint
from sympy.functions.elementary.complexes import re, im
from sympy.strategies import typed, exhaust, condition, do_one, unpack
from sympy.strategies.traverse import bottom_up
from sympy.utilities.iterables import is_sequence, sift
from sympy.utilities.misc import filldedent
from sympy.matrices import Matrix, ShapeError
from sympy.matrices.exceptions import NonInvertibleMatrixError
from sympy.matrices.expressions.determinant import det, Determinant
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions.special import ZeroMatrix, Identity
from sympy.matrices.expressions.trace import trace
from sympy.matrices.expressions.transpose import Transpose, transpose
class BlockMatrix(MatrixExpr):
"""A BlockMatrix is a Matrix comprised of other matrices.
The submatrices are stored in a SymPy Matrix object but accessed as part of
a Matrix Expression
>>> from sympy import (MatrixSymbol, BlockMatrix, symbols,
... Identity, ZeroMatrix, block_collapse)
>>> n,m,l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
>>> print(B)
Matrix([
[X, Z],
[0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]])
>>> print(C)
Matrix([[I, Z]])
>>> print(block_collapse(C*B))
Matrix([[X, Z + Z*Y]])
Some matrices might be comprised of rows of blocks with
the matrices in each row having the same height and the
rows all having the same total number of columns but
not having the same number of columns for each matrix
in each row. In this case, the matrix is not a block
matrix and should be instantiated by Matrix.
>>> from sympy import ones, Matrix
>>> dat = [
... [ones(3,2), ones(3,3)*2],
... [ones(2,3)*3, ones(2,2)*4]]
...
>>> BlockMatrix(dat)
Traceback (most recent call last):
...
ValueError:
Although this matrix is comprised of blocks, the blocks do not fill
the matrix in a size-symmetric fashion. To create a full matrix from
these arguments, pass them directly to Matrix.
>>> Matrix(dat)
Matrix([
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[1, 1, 2, 2, 2],
[3, 3, 3, 4, 4],
[3, 3, 3, 4, 4]])
See Also
========
sympy.matrices.matrixbase.MatrixBase.irregular
"""
def __new__(cls, *args, **kwargs):
from sympy.matrices.immutable import ImmutableDenseMatrix
isMat = lambda i: getattr(i, 'is_Matrix', False)
if len(args) != 1 or \
not is_sequence(args[0]) or \
len({isMat(r) for r in args[0]}) != 1:
raise ValueError(filldedent('''
expecting a sequence of 1 or more rows
containing Matrices.'''))
rows = args[0] if args else []
if not isMat(rows):
if rows and isMat(rows[0]):
rows = [rows] # rows is not list of lists or []
# regularity check
# same number of matrices in each row
blocky = ok = len({len(r) for r in rows}) == 1
if ok:
# same number of rows for each matrix in a row
for r in rows:
ok = len({i.rows for i in r}) == 1
if not ok:
break
blocky = ok
if ok:
# same number of cols for each matrix in each col
for c in range(len(rows[0])):
ok = len({rows[i][c].cols
for i in range(len(rows))}) == 1
if not ok:
break
if not ok:
# same total cols in each row
ok = len({
sum(i.cols for i in r) for r in rows}) == 1
if blocky and ok:
raise ValueError(filldedent('''
Although this matrix is comprised of blocks,
the blocks do not fill the matrix in a
size-symmetric fashion. To create a full matrix
from these arguments, pass them directly to
Matrix.'''))
raise ValueError(filldedent('''
When there are not the same number of rows in each
row's matrices or there are not the same number of
total columns in each row, the matrix is not a
block matrix. If this matrix is known to consist of
blocks fully filling a 2-D space then see
Matrix.irregular.'''))
mat = ImmutableDenseMatrix(rows, evaluate=False)
obj = Basic.__new__(cls, mat)
return obj
@property
def shape(self):
numrows = numcols = 0
M = self.blocks
for i in range(M.shape[0]):
numrows += M[i, 0].shape[0]
for i in range(M.shape[1]):
numcols += M[0, i].shape[1]
return (numrows, numcols)
@property
def blockshape(self):
return self.blocks.shape
@property
def blocks(self):
return self.args[0]
@property
def rowblocksizes(self):
return [self.blocks[i, 0].rows for i in range(self.blockshape[0])]
@property
def colblocksizes(self):
return [self.blocks[0, i].cols for i in range(self.blockshape[1])]
def structurally_equal(self, other):
return (isinstance(other, BlockMatrix)
and self.shape == other.shape
and self.blockshape == other.blockshape
and self.rowblocksizes == other.rowblocksizes
and self.colblocksizes == other.colblocksizes)
def _blockmul(self, other):
if (isinstance(other, BlockMatrix) and
self.colblocksizes == other.rowblocksizes):
return BlockMatrix(self.blocks*other.blocks)
return self * other
def _blockadd(self, other):
if (isinstance(other, BlockMatrix)
and self.structurally_equal(other)):
return BlockMatrix(self.blocks + other.blocks)
return self + other
def _eval_transpose(self):
# Flip all the individual matrices
matrices = [transpose(matrix) for matrix in self.blocks]
# Make a copy
M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
# Transpose the block structure
M = M.transpose()
return BlockMatrix(M)
def _eval_adjoint(self):
# Adjoint all the individual matrices
matrices = [adjoint(matrix) for matrix in self.blocks]
# Make a copy
M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
# Transpose the block structure
M = M.transpose()
return BlockMatrix(M)
def _eval_trace(self):
if self.rowblocksizes == self.colblocksizes:
blocks = [self.blocks[i, i] for i in range(self.blockshape[0])]
return Add(*[trace(block) for block in blocks])
def _eval_determinant(self):
if self.blockshape == (1, 1):
return det(self.blocks[0, 0])
if self.blockshape == (2, 2):
[[A, B],
[C, D]] = self.blocks.tolist()
if ask(Q.invertible(A)):
return det(A)*det(D - C*A.I*B)
elif ask(Q.invertible(D)):
return det(D)*det(A - B*D.I*C)
return Determinant(self)
def _eval_as_real_imag(self):
real_matrices = [re(matrix) for matrix in self.blocks]
real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices)
im_matrices = [im(matrix) for matrix in self.blocks]
im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices)
return (BlockMatrix(real_matrices), BlockMatrix(im_matrices))
def _eval_derivative(self, x):
return BlockMatrix(self.blocks.diff(x))
def transpose(self):
"""Return transpose of matrix.
Examples
========
>>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
>>> from sympy.abc import m, n
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
>>> B.transpose()
Matrix([
[X.T, 0],
[Z.T, Y.T]])
>>> _.transpose()
Matrix([
[X, Z],
[0, Y]])
"""
return self._eval_transpose()
def schur(self, mat = 'A', generalized = False):
"""Return the Schur Complement of the 2x2 BlockMatrix
Parameters
==========
mat : String, optional
The matrix with respect to which the
Schur Complement is calculated. 'A' is
used by default
generalized : bool, optional
If True, returns the generalized Schur
Component which uses Moore-Penrose Inverse
Examples
========
>>> from sympy import symbols, MatrixSymbol, BlockMatrix
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', n, n)
>>> B = MatrixSymbol('B', n, m)
>>> C = MatrixSymbol('C', m, n)
>>> D = MatrixSymbol('D', m, m)
>>> X = BlockMatrix([[A, B], [C, D]])
The default Schur Complement is evaluated with "A"
>>> X.schur()
-C*A**(-1)*B + D
>>> X.schur('D')
A - B*D**(-1)*C
Schur complement with non-invertible matrices is not
defined. Instead, the generalized Schur complement can
be calculated which uses the Moore-Penrose Inverse. To
achieve this, `generalized` must be set to `True`
>>> X.schur('B', generalized=True)
C - D*(B.T*B)**(-1)*B.T*A
>>> X.schur('C', generalized=True)
-A*(C.T*C)**(-1)*C.T*D + B
Returns
=======
M : Matrix
The Schur Complement Matrix
Raises
======
ShapeError
If the block matrix is not a 2x2 matrix
NonInvertibleMatrixError
If given matrix is non-invertible
References
==========
.. [1] Wikipedia Article on Schur Component : https://en.wikipedia.org/wiki/Schur_complement
See Also
========
sympy.matrices.matrixbase.MatrixBase.pinv
"""
if self.blockshape == (2, 2):
[[A, B],
[C, D]] = self.blocks.tolist()
d={'A' : A, 'B' : B, 'C' : C, 'D' : D}
try:
inv = (d[mat].T*d[mat]).inv()*d[mat].T if generalized else d[mat].inv()
if mat == 'A':
return D - C * inv * B
elif mat == 'B':
return C - D * inv * A
elif mat == 'C':
return B - A * inv * D
elif mat == 'D':
return A - B * inv * C
#For matrices where no sub-matrix is square
return self
except NonInvertibleMatrixError:
raise NonInvertibleMatrixError('The given matrix is not invertible. Please set generalized=True \
to compute the generalized Schur Complement which uses Moore-Penrose Inverse')
else:
raise ShapeError('Schur Complement can only be calculated for 2x2 block matrices')
def LDUdecomposition(self):
"""Returns the Block LDU decomposition of
a 2x2 Block Matrix
Returns
=======
(L, D, U) : Matrices
L : Lower Diagonal Matrix
D : Diagonal Matrix
U : Upper Diagonal Matrix
Examples
========
>>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', n, n)
>>> B = MatrixSymbol('B', n, m)
>>> C = MatrixSymbol('C', m, n)
>>> D = MatrixSymbol('D', m, m)
>>> X = BlockMatrix([[A, B], [C, D]])
>>> L, D, U = X.LDUdecomposition()
>>> block_collapse(L*D*U)
Matrix([
[A, B],
[C, D]])
Raises
======
ShapeError
If the block matrix is not a 2x2 matrix
NonInvertibleMatrixError
If the matrix "A" is non-invertible
See Also
========
sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
"""
if self.blockshape == (2,2):
[[A, B],
[C, D]] = self.blocks.tolist()
try:
AI = A.I
except NonInvertibleMatrixError:
raise NonInvertibleMatrixError('Block LDU decomposition cannot be calculated when\
"A" is singular')
Ip = Identity(B.shape[0])
Iq = Identity(B.shape[1])
Z = ZeroMatrix(*B.shape)
L = BlockMatrix([[Ip, Z], [C*AI, Iq]])
D = BlockDiagMatrix(A, self.schur())
U = BlockMatrix([[Ip, AI*B],[Z.T, Iq]])
return L, D, U
else:
raise ShapeError("Block LDU decomposition is supported only for 2x2 block matrices")
def UDLdecomposition(self):
"""Returns the Block UDL decomposition of
a 2x2 Block Matrix
Returns
=======
(U, D, L) : Matrices
U : Upper Diagonal Matrix
D : Diagonal Matrix
L : Lower Diagonal Matrix
Examples
========
>>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', n, n)
>>> B = MatrixSymbol('B', n, m)
>>> C = MatrixSymbol('C', m, n)
>>> D = MatrixSymbol('D', m, m)
>>> X = BlockMatrix([[A, B], [C, D]])
>>> U, D, L = X.UDLdecomposition()
>>> block_collapse(U*D*L)
Matrix([
[A, B],
[C, D]])
Raises
======
ShapeError
If the block matrix is not a 2x2 matrix
NonInvertibleMatrixError
If the matrix "D" is non-invertible
See Also
========
sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
"""
if self.blockshape == (2,2):
[[A, B],
[C, D]] = self.blocks.tolist()
try:
DI = D.I
except NonInvertibleMatrixError:
raise NonInvertibleMatrixError('Block UDL decomposition cannot be calculated when\
"D" is singular')
Ip = Identity(A.shape[0])
Iq = Identity(B.shape[1])
Z = ZeroMatrix(*B.shape)
U = BlockMatrix([[Ip, B*DI], [Z.T, Iq]])
D = BlockDiagMatrix(self.schur('D'), D)
L = BlockMatrix([[Ip, Z],[DI*C, Iq]])
return U, D, L
else:
raise ShapeError("Block UDL decomposition is supported only for 2x2 block matrices")
def LUdecomposition(self):
"""Returns the Block LU decomposition of
a 2x2 Block Matrix
Returns
=======
(L, U) : Matrices
L : Lower Diagonal Matrix
U : Upper Diagonal Matrix
Examples
========
>>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', n, n)
>>> B = MatrixSymbol('B', n, m)
>>> C = MatrixSymbol('C', m, n)
>>> D = MatrixSymbol('D', m, m)
>>> X = BlockMatrix([[A, B], [C, D]])
>>> L, U = X.LUdecomposition()
>>> block_collapse(L*U)
Matrix([
[A, B],
[C, D]])
Raises
======
ShapeError
If the block matrix is not a 2x2 matrix
NonInvertibleMatrixError
If the matrix "A" is non-invertible
See Also
========
sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
"""
if self.blockshape == (2,2):
[[A, B],
[C, D]] = self.blocks.tolist()
try:
A = A**S.Half
AI = A.I
except NonInvertibleMatrixError:
raise NonInvertibleMatrixError('Block LU decomposition cannot be calculated when\
"A" is singular')
Z = ZeroMatrix(*B.shape)
Q = self.schur()**S.Half
L = BlockMatrix([[A, Z], [C*AI, Q]])
U = BlockMatrix([[A, AI*B],[Z.T, Q]])
return L, U
else:
raise ShapeError("Block LU decomposition is supported only for 2x2 block matrices")
def _entry(self, i, j, **kwargs):
# Find row entry
orig_i, orig_j = i, j
for row_block, numrows in enumerate(self.rowblocksizes):
cmp = i < numrows
if cmp == True:
break
elif cmp == False:
i -= numrows
elif row_block < self.blockshape[0] - 1:
# Can't tell which block and it's not the last one, return unevaluated
return MatrixElement(self, orig_i, orig_j)
for col_block, numcols in enumerate(self.colblocksizes):
cmp = j < numcols
if cmp == True:
break
elif cmp == False:
j -= numcols
elif col_block < self.blockshape[1] - 1:
return MatrixElement(self, orig_i, orig_j)
return self.blocks[row_block, col_block][i, j]
@property
def is_Identity(self):
if self.blockshape[0] != self.blockshape[1]:
return False
for i in range(self.blockshape[0]):
for j in range(self.blockshape[1]):
if i==j and not self.blocks[i, j].is_Identity:
return False
if i!=j and not self.blocks[i, j].is_ZeroMatrix:
return False
return True
@property
def is_structurally_symmetric(self):
return self.rowblocksizes == self.colblocksizes
def equals(self, other):
if self == other:
return True
if (isinstance(other, BlockMatrix) and self.blocks == other.blocks):
return True
return super().equals(other)
class BlockDiagMatrix(BlockMatrix):
"""A sparse matrix with block matrices along its diagonals
Examples
========
>>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
>>> n, m, l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> BlockDiagMatrix(X, Y)
Matrix([
[X, 0],
[0, Y]])
Notes
=====
If you want to get the individual diagonal blocks, use
:meth:`get_diag_blocks`.
See Also
========
sympy.matrices.dense.diag
"""
def __new__(cls, *mats):
return Basic.__new__(BlockDiagMatrix, *[_sympify(m) for m in mats])
@property
def diag(self):
return self.args
@property
def blocks(self):
from sympy.matrices.immutable import ImmutableDenseMatrix
mats = self.args
data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
for j in range(len(mats))]
for i in range(len(mats))]
return ImmutableDenseMatrix(data, evaluate=False)
@property
def shape(self):
return (sum(block.rows for block in self.args),
sum(block.cols for block in self.args))
@property
def blockshape(self):
n = len(self.args)
return (n, n)
@property
def rowblocksizes(self):
return [block.rows for block in self.args]
@property
def colblocksizes(self):
return [block.cols for block in self.args]
def _all_square_blocks(self):
"""Returns true if all blocks are square"""
return all(mat.is_square for mat in self.args)
def _eval_determinant(self):
if self._all_square_blocks():
return Mul(*[det(mat) for mat in self.args])
# At least one block is non-square. Since the entire matrix must be square we know there must
# be at least two blocks in this matrix, in which case the entire matrix is necessarily rank-deficient
return S.Zero
def _eval_inverse(self, expand='ignored'):
if self._all_square_blocks():
return BlockDiagMatrix(*[mat.inverse() for mat in self.args])
# See comment in _eval_determinant()
raise NonInvertibleMatrixError('Matrix det == 0; not invertible.')
def _eval_transpose(self):
return BlockDiagMatrix(*[mat.transpose() for mat in self.args])
def _blockmul(self, other):
if (isinstance(other, BlockDiagMatrix) and
self.colblocksizes == other.rowblocksizes):
return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)])
else:
return BlockMatrix._blockmul(self, other)
def _blockadd(self, other):
if (isinstance(other, BlockDiagMatrix) and
self.blockshape == other.blockshape and
self.rowblocksizes == other.rowblocksizes and
self.colblocksizes == other.colblocksizes):
return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)])
else:
return BlockMatrix._blockadd(self, other)
def get_diag_blocks(self):
"""Return the list of diagonal blocks of the matrix.
Examples
========
>>> from sympy import BlockDiagMatrix, Matrix
>>> A = Matrix([[1, 2], [3, 4]])
>>> B = Matrix([[5, 6], [7, 8]])
>>> M = BlockDiagMatrix(A, B)
How to get diagonal blocks from the block diagonal matrix:
>>> diag_blocks = M.get_diag_blocks()
>>> diag_blocks[0]
Matrix([
[1, 2],
[3, 4]])
>>> diag_blocks[1]
Matrix([
[5, 6],
[7, 8]])
"""
return self.args
def block_collapse(expr):
"""Evaluates a block matrix expression
>>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
>>> n,m,l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>>> print(B)
Matrix([
[X, Z],
[0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]])
>>> print(C)
Matrix([[I, Z]])
>>> print(block_collapse(C*B))
Matrix([[X, Z + Z*Y]])
"""
from sympy.strategies.util import expr_fns
hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix)
conditioned_rl = condition(
hasbm,
typed(
{MatAdd: do_one(bc_matadd, bc_block_plus_ident),
MatMul: do_one(bc_matmul, bc_dist),
MatPow: bc_matmul,
Transpose: bc_transpose,
Inverse: bc_inverse,
BlockMatrix: do_one(bc_unpack, deblock)}
)
)
rule = exhaust(
bottom_up(
exhaust(conditioned_rl),
fns=expr_fns
)
)
result = rule(expr)
doit = getattr(result, 'doit', None)
if doit is not None:
return doit()
else:
return result
def bc_unpack(expr):
if expr.blockshape == (1, 1):
return expr.blocks[0, 0]
return expr
def bc_matadd(expr):
args = sift(expr.args, lambda M: isinstance(M, BlockMatrix))
blocks = args[True]
if not blocks:
return expr
nonblocks = args[False]
block = blocks[0]
for b in blocks[1:]:
block = block._blockadd(b)
if nonblocks:
return MatAdd(*nonblocks) + block
else:
return block
def bc_block_plus_ident(expr):
idents = [arg for arg in expr.args if arg.is_Identity]
if not idents:
return expr
blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)]
if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks)
and blocks[0].is_structurally_symmetric):
block_id = BlockDiagMatrix(*[Identity(k)
for k in blocks[0].rowblocksizes])
rest = [arg for arg in expr.args if not arg.is_Identity and not isinstance(arg, BlockMatrix)]
return MatAdd(block_id * len(idents), *blocks, *rest).doit()
return expr
def bc_dist(expr):
""" Turn a*[X, Y] into [a*X, a*Y] """
factor, mat = expr.as_coeff_mmul()
if factor == 1:
return expr
unpacked = unpack(mat)
if isinstance(unpacked, BlockDiagMatrix):
B = unpacked.diag
new_B = [factor * mat for mat in B]
return BlockDiagMatrix(*new_B)
elif isinstance(unpacked, BlockMatrix):
B = unpacked.blocks
new_B = [
[factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)]
return BlockMatrix(new_B)
return expr
def bc_matmul(expr):
if isinstance(expr, MatPow):
if expr.args[1].is_Integer and expr.args[1] > 0:
factor, matrices = 1, [expr.args[0]]*expr.args[1]
else:
return expr
else:
factor, matrices = expr.as_coeff_matrices()
i = 0
while (i+1 < len(matrices)):
A, B = matrices[i:i+2]
if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix):
matrices[i] = A._blockmul(B)
matrices.pop(i+1)
elif isinstance(A, BlockMatrix):
matrices[i] = A._blockmul(BlockMatrix([[B]]))
matrices.pop(i+1)
elif isinstance(B, BlockMatrix):
matrices[i] = BlockMatrix([[A]])._blockmul(B)
matrices.pop(i+1)
else:
i+=1
return MatMul(factor, *matrices).doit()
def bc_transpose(expr):
collapse = block_collapse(expr.arg)
return collapse._eval_transpose()
def bc_inverse(expr):
if isinstance(expr.arg, BlockDiagMatrix):
return expr.inverse()
expr2 = blockinverse_1x1(expr)
if expr != expr2:
return expr2
return blockinverse_2x2(Inverse(reblock_2x2(expr.arg)))
def blockinverse_1x1(expr):
if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1):
mat = Matrix([[expr.arg.blocks[0].inverse()]])
return BlockMatrix(mat)
return expr
def blockinverse_2x2(expr):
if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2):
# See: Inverses of 2x2 Block Matrices, Tzon-Tzer Lu and Sheng-Hua Shiou
[[A, B],
[C, D]] = expr.arg.blocks.tolist()
formula = _choose_2x2_inversion_formula(A, B, C, D)
if formula != None:
MI = expr.arg.schur(formula).I
if formula == 'A':
AI = A.I
return BlockMatrix([[AI + AI * B * MI * C * AI, -AI * B * MI], [-MI * C * AI, MI]])
if formula == 'B':
BI = B.I
return BlockMatrix([[-MI * D * BI, MI], [BI + BI * A * MI * D * BI, -BI * A * MI]])
if formula == 'C':
CI = C.I
return BlockMatrix([[-CI * D * MI, CI + CI * D * MI * A * CI], [MI, -MI * A * CI]])
if formula == 'D':
DI = D.I
return BlockMatrix([[MI, -MI * B * DI], [-DI * C * MI, DI + DI * C * MI * B * DI]])
return expr
def _choose_2x2_inversion_formula(A, B, C, D):
"""
Assuming [[A, B], [C, D]] would form a valid square block matrix, find
which of the classical 2x2 block matrix inversion formulas would be
best suited.
Returns 'A', 'B', 'C', 'D' to represent the algorithm involving inversion
of the given argument or None if the matrix cannot be inverted using
any of those formulas.
"""
# Try to find a known invertible matrix. Note that the Schur complement
# is currently not being considered for this
A_inv = ask(Q.invertible(A))
if A_inv == True:
return 'A'
B_inv = ask(Q.invertible(B))
if B_inv == True:
return 'B'
C_inv = ask(Q.invertible(C))
if C_inv == True:
return 'C'
D_inv = ask(Q.invertible(D))
if D_inv == True:
return 'D'
# Otherwise try to find a matrix that isn't known to be non-invertible
if A_inv != False:
return 'A'
if B_inv != False:
return 'B'
if C_inv != False:
return 'C'
if D_inv != False:
return 'D'
return None
def deblock(B):
""" Flatten a BlockMatrix of BlockMatrices """
if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix):
return B
wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]])
bb = B.blocks.applyfunc(wrap) # everything is a block
try:
MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), [])
for row in range(0, bb.shape[0]):
M = Matrix(bb[row, 0].blocks)
for col in range(1, bb.shape[1]):
M = M.row_join(bb[row, col].blocks)
MM = MM.col_join(M)
return BlockMatrix(MM)
except ShapeError:
return B
def reblock_2x2(expr):
"""
Reblock a BlockMatrix so that it has 2x2 blocks of block matrices. If
possible in such a way that the matrix continues to be invertible using the
classical 2x2 block inversion formulas.
"""
if not isinstance(expr, BlockMatrix) or not all(d > 2 for d in expr.blockshape):
return expr
BM = BlockMatrix # for brevity's sake
rowblocks, colblocks = expr.blockshape
blocks = expr.blocks
for i in range(1, rowblocks):
for j in range(1, colblocks):
# try to split rows at i and cols at j
A = bc_unpack(BM(blocks[:i, :j]))
B = bc_unpack(BM(blocks[:i, j:]))
C = bc_unpack(BM(blocks[i:, :j]))
D = bc_unpack(BM(blocks[i:, j:]))
formula = _choose_2x2_inversion_formula(A, B, C, D)
if formula is not None:
return BlockMatrix([[A, B], [C, D]])
# else: nothing worked, just split upper left corner
return BM([[blocks[0, 0], BM(blocks[0, 1:])],
[BM(blocks[1:, 0]), BM(blocks[1:, 1:])]])
def bounds(sizes):
""" Convert sequence of numbers into pairs of low-high pairs
>>> from sympy.matrices.expressions.blockmatrix import bounds
>>> bounds((1, 10, 50))
[(0, 1), (1, 11), (11, 61)]
"""
low = 0
rv = []
for size in sizes:
rv.append((low, low + size))
low += size
return rv
def blockcut(expr, rowsizes, colsizes):
""" Cut a matrix expression into Blocks
>>> from sympy import ImmutableMatrix, blockcut
>>> M = ImmutableMatrix(4, 4, range(16))
>>> B = blockcut(M, (1, 3), (1, 3))
>>> type(B).__name__
'BlockMatrix'
>>> ImmutableMatrix(B.blocks[0, 1])
Matrix([[1, 2, 3]])
"""
rowbounds = bounds(rowsizes)
colbounds = bounds(colsizes)
return BlockMatrix([[MatrixSlice(expr, rowbound, colbound)
for colbound in colbounds]
for rowbound in rowbounds])
|