File size: 34,382 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
from itertools import product

from sympy.concrete.summations import Sum
from sympy.core.function import (diff, expand_func)
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (conjugate, polar_lift)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.bessel import (besseli, besselj, besselk, bessely, hankel1, hankel2, hn1, hn2, jn, jn_zeros, yn)
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
from sympy.functions.special.hyper import hyper
from sympy.integrals.integrals import Integral
from sympy.series.order import O
from sympy.series.series import series
from sympy.functions.special.bessel import (airyai, airybi,
                                            airyaiprime, airybiprime, marcumq)
from sympy.core.random import (random_complex_number as randcplx,
                                      verify_numerically as tn,
                                      test_derivative_numerically as td,
                                      _randint)
from sympy.simplify import besselsimp
from sympy.testing.pytest import raises, slow

from sympy.abc import z, n, k, x

randint = _randint()


def test_bessel_rand():
    for f in [besselj, bessely, besseli, besselk, hankel1, hankel2]:
        assert td(f(randcplx(), z), z)

    for f in [jn, yn, hn1, hn2]:
        assert td(f(randint(-10, 10), z), z)


def test_bessel_twoinputs():
    for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn]:
        raises(TypeError, lambda: f(1))
        raises(TypeError, lambda: f(1, 2, 3))


def test_besselj_leading_term():
    assert besselj(0, x).as_leading_term(x) == 1
    assert besselj(1, sin(x)).as_leading_term(x) == x/2
    assert besselj(1, 2*sqrt(x)).as_leading_term(x) == sqrt(x)

    # https://github.com/sympy/sympy/issues/21701
    assert (besselj(z, x)/x**z).as_leading_term(x) == 1/(2**z*gamma(z + 1))


def test_bessely_leading_term():
    assert bessely(0, x).as_leading_term(x) == (2*log(x) - 2*log(2) + 2*S.EulerGamma)/pi
    assert bessely(1, sin(x)).as_leading_term(x) == -2/(pi*x)
    assert bessely(1, 2*sqrt(x)).as_leading_term(x) == -1/(pi*sqrt(x))


def test_besseli_leading_term():
    assert besseli(0, x).as_leading_term(x) == 1
    assert besseli(1, sin(x)).as_leading_term(x) == x/2
    assert besseli(1, 2*sqrt(x)).as_leading_term(x) == sqrt(x)


def test_besselk_leading_term():
    assert besselk(0, x).as_leading_term(x) == -log(x) - S.EulerGamma + log(2)
    assert besselk(1, sin(x)).as_leading_term(x) == 1/x
    assert besselk(1, 2*sqrt(x)).as_leading_term(x) == 1/(2*sqrt(x))


def test_besselj_series():
    assert besselj(0, x).series(x) == 1 - x**2/4 + x**4/64 + O(x**6)
    assert besselj(0, x**(1.1)).series(x) == 1 + x**4.4/64 - x**2.2/4 + O(x**6)
    assert besselj(0, x**2 + x).series(x) == 1 - x**2/4 - x**3/2\
        - 15*x**4/64 + x**5/16 + O(x**6)
    assert besselj(0, sqrt(x) + x).series(x, n=4) == 1 - x/4 - 15*x**2/64\
        + 215*x**3/2304 - x**Rational(3, 2)/2 + x**Rational(5, 2)/16\
        + 23*x**Rational(7, 2)/384 + O(x**4)
    assert besselj(0, x/(1 - x)).series(x) == 1 - x**2/4 - x**3/2 - 47*x**4/64\
        - 15*x**5/16 + O(x**6)
    assert besselj(0, log(1 + x)).series(x) == 1 - x**2/4 + x**3/4\
        - 41*x**4/192 + 17*x**5/96 + O(x**6)
    assert besselj(1, sin(x)).series(x) == x/2 - 7*x**3/48 + 73*x**5/1920 + O(x**6)
    assert besselj(1, 2*sqrt(x)).series(x) == sqrt(x) - x**Rational(3, 2)/2\
        + x**Rational(5, 2)/12 - x**Rational(7, 2)/144 + x**Rational(9, 2)/2880\
        - x**Rational(11, 2)/86400 + O(x**6)
    assert besselj(-2, sin(x)).series(x, n=4) == besselj(2, sin(x)).series(x, n=4)


def test_bessely_series():
    const = 2*S.EulerGamma/pi - 2*log(2)/pi + 2*log(x)/pi
    assert bessely(0, x).series(x, n=4) == const + x**2*(-log(x)/(2*pi)\
        + (2 - 2*S.EulerGamma)/(4*pi) + log(2)/(2*pi)) + O(x**4*log(x))
    assert bessely(1, x).series(x, n=4) == -2/(pi*x) + x*(log(x)/pi - log(2)/pi - \
        (1 - 2*S.EulerGamma)/(2*pi)) + x**3*(-log(x)/(8*pi) + \
        (S(5)/2 - 2*S.EulerGamma)/(16*pi) + log(2)/(8*pi)) + O(x**4*log(x))
    assert bessely(2, x).series(x, n=4) == -4/(pi*x**2) - 1/pi + x**2*(log(x)/(4*pi) - \
        log(2)/(4*pi) - (S(3)/2 - 2*S.EulerGamma)/(8*pi)) + O(x**4*log(x))
    assert bessely(3, x).series(x, n=4) == -16/(pi*x**3) - 2/(pi*x) - \
        x/(4*pi) + x**3*(log(x)/(24*pi) - log(2)/(24*pi) - \
        (S(11)/6 - 2*S.EulerGamma)/(48*pi)) + O(x**4*log(x))
    assert bessely(0, x**(1.1)).series(x, n=4) == 2*S.EulerGamma/pi\
        - 2*log(2)/pi + 2.2*log(x)/pi + x**2.2*(-0.55*log(x)/pi\
        + (2 - 2*S.EulerGamma)/(4*pi) + log(2)/(2*pi)) + O(x**4*log(x))
    assert bessely(0, x**2 + x).series(x, n=4) == \
        const - (2 - 2*S.EulerGamma)*(-x**3/(2*pi) - x**2/(4*pi)) + 2*x/pi\
        + x**2*(-log(x)/(2*pi) - 1/pi + log(2)/(2*pi))\
        + x**3*(-log(x)/pi + 1/(6*pi) + log(2)/pi) + O(x**4*log(x))
    assert bessely(0, x/(1 - x)).series(x, n=3) == const\
        + 2*x/pi + x**2*(-log(x)/(2*pi) + (2 - 2*S.EulerGamma)/(4*pi)\
        + log(2)/(2*pi) + 1/pi) + O(x**3*log(x))
    assert bessely(0, log(1 + x)).series(x, n=3) == const\
        - x/pi + x**2*(-log(x)/(2*pi) + (2 - 2*S.EulerGamma)/(4*pi)\
        + log(2)/(2*pi) + 5/(12*pi)) + O(x**3*log(x))
    assert bessely(1, sin(x)).series(x, n=4) == -1/(pi*(-x**3/12 + x/2)) - \
        (1 - 2*S.EulerGamma)*(-x**3/12 + x/2)/pi + x*(log(x)/pi - log(2)/pi) + \
        x**3*(-7*log(x)/(24*pi) - 1/(6*pi) + (S(5)/2 - 2*S.EulerGamma)/(16*pi) +
        7*log(2)/(24*pi)) + O(x**4*log(x))
    assert bessely(1, 2*sqrt(x)).series(x, n=3) == -1/(pi*sqrt(x)) + \
        sqrt(x)*(log(x)/pi - (1 - 2*S.EulerGamma)/pi) + x**(S(3)/2)*(-log(x)/(2*pi) + \
        (S(5)/2 - 2*S.EulerGamma)/(2*pi)) + x**(S(5)/2)*(log(x)/(12*pi) - \
        (S(10)/3 - 2*S.EulerGamma)/(12*pi)) + O(x**3*log(x))
    assert bessely(-2, sin(x)).series(x, n=4) == bessely(2, sin(x)).series(x, n=4)


def test_besseli_series():
    assert besseli(0, x).series(x) == 1 + x**2/4 + x**4/64 + O(x**6)
    assert besseli(0, x**(1.1)).series(x) == 1 + x**4.4/64 + x**2.2/4 + O(x**6)
    assert besseli(0, x**2 + x).series(x) == 1 + x**2/4 + x**3/2 + 17*x**4/64 + \
        x**5/16 + O(x**6)
    assert besseli(0, sqrt(x) + x).series(x, n=4) == 1 + x/4 + 17*x**2/64 + \
        217*x**3/2304 + x**(S(3)/2)/2 + x**(S(5)/2)/16 + 25*x**(S(7)/2)/384 + O(x**4)
    assert besseli(0, x/(1 - x)).series(x) == 1 + x**2/4 + x**3/2 + 49*x**4/64 + \
        17*x**5/16 + O(x**6)
    assert besseli(0, log(1 + x)).series(x) == 1 + x**2/4 - x**3/4 + 47*x**4/192 - \
        23*x**5/96 + O(x**6)
    assert besseli(1, sin(x)).series(x) == x/2 - x**3/48 - 47*x**5/1920 + O(x**6)
    assert besseli(1, 2*sqrt(x)).series(x) == sqrt(x) + x**(S(3)/2)/2 + x**(S(5)/2)/12 + \
        x**(S(7)/2)/144 + x**(S(9)/2)/2880 + x**(S(11)/2)/86400 + O(x**6)
    assert besseli(-2, sin(x)).series(x, n=4) == besseli(2, sin(x)).series(x, n=4)


def test_besselk_series():
    const = log(2) - S.EulerGamma - log(x)
    assert besselk(0, x).series(x, n=4) == const + \
        x**2*(-log(x)/4 - S.EulerGamma/4 + log(2)/4 + S(1)/4) + O(x**4*log(x))
    assert besselk(1, x).series(x, n=4) == 1/x + x*(log(x)/2 - log(2)/2 - \
        S(1)/4 + S.EulerGamma/2) + x**3*(log(x)/16 - S(5)/64 - log(2)/16 + \
        S.EulerGamma/16) + O(x**4*log(x))
    assert besselk(2, x).series(x, n=4) == 2/x**2 - S(1)/2 + x**2*(-log(x)/8 - \
        S.EulerGamma/8 + log(2)/8 + S(3)/32) + O(x**4*log(x))
    assert besselk(0, x**(1.1)).series(x, n=4) == log(2) - S.EulerGamma - \
        1.1*log(x) + x**2.2*(-0.275*log(x) - S.EulerGamma/4 + \
        log(2)/4 + S(1)/4) + O(x**4*log(x))
    assert besselk(0, x**2 + x).series(x, n=4) == const + \
        (2 - 2*S.EulerGamma)*(x**3/4 + x**2/8) - x + x**2*(-log(x)/4 + \
        log(2)/4 + S(1)/2) + x**3*(-log(x)/2 - S(7)/12 + log(2)/2) + O(x**4*log(x))
    assert besselk(0, x/(1 - x)).series(x, n=3) == const - x + x**2*(-log(x)/4 - \
        S(1)/4 - S.EulerGamma/4 + log(2)/4) + O(x**3*log(x))
    assert besselk(0, log(1 + x)).series(x, n=3) == const + x/2 + \
        x**2*(-log(x)/4 - S.EulerGamma/4 + S(1)/24 + log(2)/4) + O(x**3*log(x))
    assert besselk(1, 2*sqrt(x)).series(x, n=3) == 1/(2*sqrt(x)) + \
        sqrt(x)*(log(x)/2 - S(1)/2 + S.EulerGamma) + x**(S(3)/2)*(log(x)/4 - S(5)/8 + \
        S.EulerGamma/2) + x**(S(5)/2)*(log(x)/24 - S(5)/36 + S.EulerGamma/12) + O(x**3*log(x))
    assert besselk(-2, sin(x)).series(x, n=4) == besselk(2, sin(x)).series(x, n=4)


def test_diff():
    assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
    assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
    assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
    assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
    assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2


def test_rewrite():
    assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z)
    assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z)
    assert besseli(n, z).rewrite(besselj) == \
        exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
    assert besselj(n, z).rewrite(besseli) == \
        exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)

    nu = randcplx()

    assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
    assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)

    assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
    assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)

    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)

    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)

    # check that a rewrite was triggered, when the order is set to a generic
    # symbol 'nu'
    assert yn(nu, z) != yn(nu, z).rewrite(jn)
    assert hn1(nu, z) != hn1(nu, z).rewrite(jn)
    assert hn2(nu, z) != hn2(nu, z).rewrite(jn)
    assert jn(nu, z) != jn(nu, z).rewrite(yn)
    assert hn1(nu, z) != hn1(nu, z).rewrite(yn)
    assert hn2(nu, z) != hn2(nu, z).rewrite(yn)

    # rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is
    # not allowed if a generic symbol 'nu' is used as the order of the SBFs
    # to avoid inconsistencies (the order of bessel[jy] is allowed to be
    # complex-valued, whereas SBFs are defined only for integer orders)
    order = nu
    for f in (besselj, bessely):
        assert hn1(order, z) == hn1(order, z).rewrite(f)
        assert hn2(order, z) == hn2(order, z).rewrite(f)

    assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2
    assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2

    # for integral orders rewriting SBFs w.r.t bessel[jy] is allowed
    N = Symbol('n', integer=True)
    ri = randint(-11, 10)
    for order in (ri, N):
        for f in (besselj, bessely):
            assert yn(order, z) != yn(order, z).rewrite(f)
            assert jn(order, z) != jn(order, z).rewrite(f)
            assert hn1(order, z) != hn1(order, z).rewrite(f)
            assert hn2(order, z) != hn2(order, z).rewrite(f)

    for func, refunc in product((yn, jn, hn1, hn2),
                                (jn, yn, besselj, bessely)):
        assert tn(func(ri, z), func(ri, z).rewrite(refunc), z)


def test_expand():
    assert expand_func(besselj(S.Half, z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(S.Half, z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(S.Half, z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(S.Half, z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real is True
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real is True
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None

    for besselx in [besselj, bessely, besseli, besselk]:
        assert expand_func(besselx(oo, x)) == besselx(oo, x, evaluate=False)
        assert expand_func(besselx(-oo, x)) == besselx(-oo, x, evaluate=False)


# Quite varying time, but often really slow
@slow
def test_slow_expand():
    def check(eq, ans):
        return tn(eq, ans) and eq == ans

    rn = randcplx(a=1, b=0, d=0, c=2)

    for besselx in [besselj, bessely, besseli, besselk]:
        ri = S(2*randint(-11, 10) + 1) / 2  # half integer in [-21/2, 21/2]
        assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))

    assert check(expand_func(besseli(rn, x)),
                 besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
    assert check(expand_func(besseli(-rn, x)),
                 besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)

    assert check(expand_func(besselj(rn, x)),
                 -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
    assert check(expand_func(besselj(-rn, x)),
                 -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)

    assert check(expand_func(besselk(rn, x)),
                 besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
    assert check(expand_func(besselk(-rn, x)),
                 besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)

    assert check(expand_func(bessely(rn, x)),
                 -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
    assert check(expand_func(bessely(-rn, x)),
                 -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)


def mjn(n, z):
    return expand_func(jn(n, z))


def myn(n, z):
    return expand_func(yn(n, z))


def test_jn():
    z = symbols("z")
    assert jn(0, 0) == 1
    assert jn(1, 0) == 0
    assert jn(-1, 0) == S.ComplexInfinity
    assert jn(z, 0) == jn(z, 0, evaluate=False)
    assert jn(0, oo) == 0
    assert jn(0, -oo) == 0

    assert mjn(0, z) == sin(z)/z
    assert mjn(1, z) == sin(z)/z**2 - cos(z)/z
    assert mjn(2, z) == (3/z**3 - 1/z)*sin(z) - (3/z**2) * cos(z)
    assert mjn(3, z) == (15/z**4 - 6/z**2)*sin(z) + (1/z - 15/z**3)*cos(z)
    assert mjn(4, z) == (1/z + 105/z**5 - 45/z**3)*sin(z) + \
        (-105/z**4 + 10/z**2)*cos(z)
    assert mjn(5, z) == (945/z**6 - 420/z**4 + 15/z**2)*sin(z) + \
        (-1/z - 945/z**5 + 105/z**3)*cos(z)
    assert mjn(6, z) == (-1/z + 10395/z**7 - 4725/z**5 + 210/z**3)*sin(z) + \
        (-10395/z**6 + 1260/z**4 - 21/z**2)*cos(z)

    assert expand_func(jn(n, z)) == jn(n, z)

    # SBFs not defined for complex-valued orders
    assert jn(2+3j, 5.2+0.3j).evalf() == jn(2+3j, 5.2+0.3j)

    assert eq([jn(2, 5.2+0.3j).evalf(10)],
              [0.09941975672 - 0.05452508024*I])


def test_yn():
    z = symbols("z")
    assert myn(0, z) == -cos(z)/z
    assert myn(1, z) == -cos(z)/z**2 - sin(z)/z
    assert myn(2, z) == -((3/z**3 - 1/z)*cos(z) + (3/z**2)*sin(z))
    assert expand_func(yn(n, z)) == yn(n, z)

    # SBFs not defined for complex-valued orders
    assert yn(2+3j, 5.2+0.3j).evalf() == yn(2+3j, 5.2+0.3j)

    assert eq([yn(2, 5.2+0.3j).evalf(10)],
              [0.185250342 + 0.01489557397*I])


def test_sympify_yn():
    assert S(15) in myn(3, pi).atoms()
    assert myn(3, pi) == 15/pi**4 - 6/pi**2


def eq(a, b, tol=1e-6):
    for u, v in zip(a, b):
        if not (abs(u - v) < tol):
            return False
    return True


def test_jn_zeros():
    assert eq(jn_zeros(0, 4), [3.141592, 6.283185, 9.424777, 12.566370])
    assert eq(jn_zeros(1, 4), [4.493409, 7.725251, 10.904121, 14.066193])
    assert eq(jn_zeros(2, 4), [5.763459, 9.095011, 12.322940, 15.514603])
    assert eq(jn_zeros(3, 4), [6.987932, 10.417118, 13.698023, 16.923621])
    assert eq(jn_zeros(4, 4), [8.182561, 11.704907, 15.039664, 18.301255])


def test_bessel_eval():
    n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)

    for f in [besselj, besseli]:
        assert f(0, 0) is S.One
        assert f(2.1, 0) is S.Zero
        assert f(-3, 0) is S.Zero
        assert f(-10.2, 0) is S.ComplexInfinity
        assert f(1 + 3*I, 0) is S.Zero
        assert f(-3 + I, 0) is S.ComplexInfinity
        assert f(-2*I, 0) is S.NaN
        assert f(n, 0) != S.One and f(n, 0) != S.Zero
        assert f(m, 0) != S.One and f(m, 0) != S.Zero
        assert f(k, 0) is S.Zero

    assert bessely(0, 0) is S.NegativeInfinity
    assert besselk(0, 0) is S.Infinity
    for f in [bessely, besselk]:
        assert f(1 + I, 0) is S.ComplexInfinity
        assert f(I, 0) is S.NaN

    for f in [besselj, bessely]:
        assert f(m, S.Infinity) is S.Zero
        assert f(m, S.NegativeInfinity) is S.Zero

    for f in [besseli, besselk]:
        assert f(m, I*S.Infinity) is S.Zero
        assert f(m, I*S.NegativeInfinity) is S.Zero

    for f in [besseli, besselk]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == f(3, z)
        assert f(-n, z) == f(n, z)
        assert f(-m, z) != f(m, z)

    for f in [besselj, bessely]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == -f(3, z)
        assert f(-n, z) == (-1)**n*f(n, z)
        assert f(-m, z) != (-1)**m*f(m, z)

    for f in [besselj, besseli]:
        assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)

    assert besseli(2, -z) == besseli(2, z)
    assert besseli(3, -z) == -besseli(3, z)

    assert besselj(0, -z) == besselj(0, z)
    assert besselj(1, -z) == -besselj(1, z)

    assert besseli(0, I*z) == besselj(0, z)
    assert besseli(1, I*z) == I*besselj(1, z)
    assert besselj(3, I*z) == -I*besseli(3, z)


def test_bessel_nan():
    # FIXME: could have these return NaN; for now just fix infinite recursion
    for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, yn, jn]:
        assert f(1, S.NaN) == f(1, S.NaN, evaluate=False)


def test_meromorphic():
    assert besselj(2, x).is_meromorphic(x, 1) == True
    assert besselj(2, x).is_meromorphic(x, 0) == True
    assert besselj(2, x).is_meromorphic(x, oo) == False
    assert besselj(S(2)/3, x).is_meromorphic(x, 1) == True
    assert besselj(S(2)/3, x).is_meromorphic(x, 0) == False
    assert besselj(S(2)/3, x).is_meromorphic(x, oo) == False
    assert besselj(x, 2*x).is_meromorphic(x, 2) == False
    assert besselk(0, x).is_meromorphic(x, 1) == True
    assert besselk(2, x).is_meromorphic(x, 0) == True
    assert besseli(0, x).is_meromorphic(x, 1) == True
    assert besseli(2, x).is_meromorphic(x, 0) == True
    assert bessely(0, x).is_meromorphic(x, 1) == True
    assert bessely(0, x).is_meromorphic(x, 0) == False
    assert bessely(2, x).is_meromorphic(x, 0) == True
    assert hankel1(3, x**2 + 2*x).is_meromorphic(x, 1) == True
    assert hankel1(0, x).is_meromorphic(x, 0) == False
    assert hankel2(11, 4).is_meromorphic(x, 5) == True
    assert hn1(6, 7*x**3 + 4).is_meromorphic(x, 7) == True
    assert hn2(3, 2*x).is_meromorphic(x, 9) == True
    assert jn(5, 2*x + 7).is_meromorphic(x, 4) == True
    assert yn(8, x**2 + 11).is_meromorphic(x, 6) == True


def test_conjugate():
    n = Symbol('n')
    z = Symbol('z', extended_real=False)
    x = Symbol('x', extended_real=True)
    y = Symbol('y', positive=True)
    t = Symbol('t', negative=True)

    for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]:
        assert f(n, -1).conjugate() != f(conjugate(n), -1)
        assert f(n, x).conjugate() != f(conjugate(n), x)
        assert f(n, t).conjugate() != f(conjugate(n), t)

    rz = randcplx(b=0.5)

    for f in [besseli, besselj, besselk, bessely]:
        assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I)
        assert f(n, 0).conjugate() == f(conjugate(n), 0)
        assert f(n, 1).conjugate() == f(conjugate(n), 1)
        assert f(n, z).conjugate() == f(conjugate(n), conjugate(z))
        assert f(n, y).conjugate() == f(conjugate(n), y)
        assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz)))

    assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I)
    assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0)
    assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1)
    assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y)
    assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z))
    assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz)))

    assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I)
    assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0)
    assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1)
    assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y)
    assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z))
    assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz)))


def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        from sympy.core.random import uniform
        c = uniform(1, 5)
        expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
        return abs(expr.n() - expr2.n()).n() < 1e-10

    nu = Symbol('nu')
    assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
    assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)


def test_airy_base():
    z = Symbol('z')
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)

    assert conjugate(airyai(z)) == airyai(conjugate(z))
    assert airyai(x).is_extended_real

    assert airyai(x+I*y).as_real_imag() == (
            airyai(x - I*y)/2 + airyai(x + I*y)/2,
            I*(airyai(x - I*y) - airyai(x + I*y))/2)


def test_airyai():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3)))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert series(airyai(z), z, 0, 3) == (
        3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))

    assert airyai(z).rewrite(hyper) == (
        -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
         3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyai(z).rewrite(besseli) == (
        -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) +
         (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) -
                 besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == (
        -sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
         (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2)


def test_airybi():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybi(z), airybi)

    assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3)))
    assert airybi(oo) is oo
    assert airybi(-oo) == 0

    assert diff(airybi(z), z) == airybiprime(z)

    assert series(airybi(z), z, 0, 3) == (
        3**Rational(1, 3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))

    assert airybi(z).rewrite(hyper) == (
        3**Rational(1, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) +
        3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airybi(z).rewrite(besselj), airybi)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airybi(z).rewrite(besseli) == (
        sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(1, 3) +
                 (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3))/3)
    assert airybi(p).rewrite(besseli) == (
        sqrt(3)*sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) +
                         besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airybi(2*(3*z**5)**Rational(1, 3))) == (
        sqrt(3)*(1 - (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
        (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/2)


def test_airyaiprime():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyaiprime(z), airyaiprime)

    assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3)))
    assert airyaiprime(oo) == 0

    assert diff(airyaiprime(z), z) == z*airyai(z)

    assert series(airyaiprime(z), z, 0, 3) == (
        -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))

    assert airyaiprime(z).rewrite(hyper) == (
        3**Rational(1, 3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) -
        3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3))))

    assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyaiprime(z).rewrite(besseli) == (
        z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) -
        (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyaiprime(p).rewrite(besseli) == (
        p*(-besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airyaiprime(2*(3*z**5)**Rational(1, 3))) == (
        sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
        (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)


def test_airybiprime():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybiprime(z), airybiprime)

    assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3))
    assert airybiprime(oo) is oo
    assert airybiprime(-oo) == 0

    assert diff(airybiprime(z), z) == z*airybi(z)

    assert series(airybiprime(z), z, 0, 3) == (
        3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))

    assert airybiprime(z).rewrite(hyper) == (
        3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) +
        3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3)))

    assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airybiprime(z).rewrite(besseli) == (
        sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) +
                 (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3)
    assert airybiprime(p).rewrite(besseli) == (
        sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == (
        sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
        (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)


def test_marcumq():
    m = Symbol('m')
    a = Symbol('a')
    b = Symbol('b')

    assert marcumq(0, 0, 0) == 0
    assert marcumq(m, 0, b) == uppergamma(m, b**2/2)/gamma(m)
    assert marcumq(2, 0, 5) == 27*exp(Rational(-25, 2))/2
    assert marcumq(0, a, 0) == 1 - exp(-a**2/2)
    assert marcumq(0, pi, 0) == 1 - exp(-pi**2/2)
    assert marcumq(1, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2
    assert marcumq(2, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)

    assert diff(marcumq(1, a, 3), a) == a*(-marcumq(1, a, 3) + marcumq(2, a, 3))
    assert diff(marcumq(2, 3, b), b) == -b**2*exp(-b**2/2 - Rational(9, 2))*besseli(1, 3*b)/3

    x = Symbol('x')
    assert marcumq(2, 3, 4).rewrite(Integral, x=x) == \
           Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3
    assert eq([marcumq(5, -2, 3).rewrite(Integral).evalf(10)],
              [0.7905769565])

    k = Symbol('k')
    assert marcumq(-3, -5, -7).rewrite(Sum, k=k) == \
           exp(-37)*Sum((Rational(5, 7))**k*besseli(k, 35), (k, 4, oo))
    assert eq([marcumq(1, 3, 1).rewrite(Sum).evalf(10)],
              [0.9891705502])

    assert marcumq(1, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2
    assert marcumq(2, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + \
           exp(-a**2)*besseli(1, a**2)
    assert marcumq(3, a, a).rewrite(besseli) == (besseli(1, a**2) + besseli(2, a**2))*exp(-a**2) + \
           S.Half + exp(-a**2)*besseli(0, a**2)/2
    assert marcumq(5, 8, 8).rewrite(besseli) == exp(-64)*besseli(0, 64)/2 + \
           (besseli(4, 64) + besseli(3, 64) + besseli(2, 64) + besseli(1, 64))*exp(-64) + S.Half
    assert marcumq(m, a, a).rewrite(besseli) == marcumq(m, a, a)

    x = Symbol('x', integer=True)
    assert marcumq(x, a, a).rewrite(besseli) == marcumq(x, a, a)


def test_issue_26134():
    x = Symbol('x')
    assert marcumq(2, 3, 4).rewrite(Integral, x=x).dummy_eq(
        Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3)