File size: 12,282 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from math import prod

from sympy.core import S, Integer
from sympy.core.function import Function
from sympy.core.logic import fuzzy_not
from sympy.core.relational import Ne
from sympy.core.sorting import default_sort_key
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.piecewise import Piecewise
from sympy.utilities.iterables import has_dups

###############################################################################
###################### Kronecker Delta, Levi-Civita etc. ######################
###############################################################################


def Eijk(*args, **kwargs):
    """
    Represent the Levi-Civita symbol.

    This is a compatibility wrapper to ``LeviCivita()``.

    See Also
    ========

    LeviCivita

    """
    return LeviCivita(*args, **kwargs)


def eval_levicivita(*args):
    """Evaluate Levi-Civita symbol."""
    n = len(args)
    return prod(
        prod(args[j] - args[i] for j in range(i + 1, n))
        / factorial(i) for i in range(n))
    # converting factorial(i) to int is slightly faster


class LeviCivita(Function):
    """
    Represent the Levi-Civita symbol.

    Explanation
    ===========

    For even permutations of indices it returns 1, for odd permutations -1, and
    for everything else (a repeated index) it returns 0.

    Thus it represents an alternating pseudotensor.

    Examples
    ========

    >>> from sympy import LeviCivita
    >>> from sympy.abc import i, j, k
    >>> LeviCivita(1, 2, 3)
    1
    >>> LeviCivita(1, 3, 2)
    -1
    >>> LeviCivita(1, 2, 2)
    0
    >>> LeviCivita(i, j, k)
    LeviCivita(i, j, k)
    >>> LeviCivita(i, j, i)
    0

    See Also
    ========

    Eijk

    """

    is_integer = True

    @classmethod
    def eval(cls, *args):
        if all(isinstance(a, (SYMPY_INTS, Integer)) for a in args):
            return eval_levicivita(*args)
        if has_dups(args):
            return S.Zero

    def doit(self, **hints):
        return eval_levicivita(*self.args)


class KroneckerDelta(Function):
    """
    The discrete, or Kronecker, delta function.

    Explanation
    ===========

    A function that takes in two integers $i$ and $j$. It returns $0$ if $i$
    and $j$ are not equal, or it returns $1$ if $i$ and $j$ are equal.

    Examples
    ========

    An example with integer indices:

        >>> from sympy import KroneckerDelta
        >>> KroneckerDelta(1, 2)
        0
        >>> KroneckerDelta(3, 3)
        1

    Symbolic indices:

        >>> from sympy.abc import i, j, k
        >>> KroneckerDelta(i, j)
        KroneckerDelta(i, j)
        >>> KroneckerDelta(i, i)
        1
        >>> KroneckerDelta(i, i + 1)
        0
        >>> KroneckerDelta(i, i + 1 + k)
        KroneckerDelta(i, i + k + 1)

    Parameters
    ==========

    i : Number, Symbol
        The first index of the delta function.
    j : Number, Symbol
        The second index of the delta function.

    See Also
    ========

    eval
    DiracDelta

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Kronecker_delta

    """

    is_integer = True

    @classmethod
    def eval(cls, i, j, delta_range=None):
        """
        Evaluates the discrete delta function.

        Examples
        ========

        >>> from sympy import KroneckerDelta
        >>> from sympy.abc import i, j, k

        >>> KroneckerDelta(i, j)
        KroneckerDelta(i, j)
        >>> KroneckerDelta(i, i)
        1
        >>> KroneckerDelta(i, i + 1)
        0
        >>> KroneckerDelta(i, i + 1 + k)
        KroneckerDelta(i, i + k + 1)

        # indirect doctest

        """

        if delta_range is not None:
            dinf, dsup = delta_range
            if (dinf - i > 0) == True:
                return S.Zero
            if (dinf - j > 0) == True:
                return S.Zero
            if (dsup - i < 0) == True:
                return S.Zero
            if (dsup - j < 0) == True:
                return S.Zero

        diff = i - j
        if diff.is_zero:
            return S.One
        elif fuzzy_not(diff.is_zero):
            return S.Zero

        if i.assumptions0.get("below_fermi") and \
                j.assumptions0.get("above_fermi"):
            return S.Zero
        if j.assumptions0.get("below_fermi") and \
                i.assumptions0.get("above_fermi"):
            return S.Zero
        # to make KroneckerDelta canonical
        # following lines will check if inputs are in order
        # if not, will return KroneckerDelta with correct order
        if default_sort_key(j) < default_sort_key(i):
            if delta_range:
                return cls(j, i, delta_range)
            else:
                return cls(j, i)

    @property
    def delta_range(self):
        if len(self.args) > 2:
            return self.args[2]

    def _eval_power(self, expt):
        if expt.is_positive:
            return self
        if expt.is_negative and expt is not S.NegativeOne:
            return 1/self

    @property
    def is_above_fermi(self):
        """
        True if Delta can be non-zero above fermi.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')
        >>> q = Symbol('q')
        >>> KroneckerDelta(p, a).is_above_fermi
        True
        >>> KroneckerDelta(p, i).is_above_fermi
        False
        >>> KroneckerDelta(p, q).is_above_fermi
        True

        See Also
        ========

        is_below_fermi, is_only_below_fermi, is_only_above_fermi

        """
        if self.args[0].assumptions0.get("below_fermi"):
            return False
        if self.args[1].assumptions0.get("below_fermi"):
            return False
        return True

    @property
    def is_below_fermi(self):
        """
        True if Delta can be non-zero below fermi.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')
        >>> q = Symbol('q')
        >>> KroneckerDelta(p, a).is_below_fermi
        False
        >>> KroneckerDelta(p, i).is_below_fermi
        True
        >>> KroneckerDelta(p, q).is_below_fermi
        True

        See Also
        ========

        is_above_fermi, is_only_above_fermi, is_only_below_fermi

        """
        if self.args[0].assumptions0.get("above_fermi"):
            return False
        if self.args[1].assumptions0.get("above_fermi"):
            return False
        return True

    @property
    def is_only_above_fermi(self):
        """
        True if Delta is restricted to above fermi.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')
        >>> q = Symbol('q')
        >>> KroneckerDelta(p, a).is_only_above_fermi
        True
        >>> KroneckerDelta(p, q).is_only_above_fermi
        False
        >>> KroneckerDelta(p, i).is_only_above_fermi
        False

        See Also
        ========

        is_above_fermi, is_below_fermi, is_only_below_fermi

        """
        return ( self.args[0].assumptions0.get("above_fermi")
                or
                self.args[1].assumptions0.get("above_fermi")
                ) or False

    @property
    def is_only_below_fermi(self):
        """
        True if Delta is restricted to below fermi.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')
        >>> q = Symbol('q')
        >>> KroneckerDelta(p, i).is_only_below_fermi
        True
        >>> KroneckerDelta(p, q).is_only_below_fermi
        False
        >>> KroneckerDelta(p, a).is_only_below_fermi
        False

        See Also
        ========

        is_above_fermi, is_below_fermi, is_only_above_fermi

        """
        return ( self.args[0].assumptions0.get("below_fermi")
                or
                self.args[1].assumptions0.get("below_fermi")
                ) or False

    @property
    def indices_contain_equal_information(self):
        """
        Returns True if indices are either both above or below fermi.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')
        >>> q = Symbol('q')
        >>> KroneckerDelta(p, q).indices_contain_equal_information
        True
        >>> KroneckerDelta(p, q+1).indices_contain_equal_information
        True
        >>> KroneckerDelta(i, p).indices_contain_equal_information
        False

        """
        if (self.args[0].assumptions0.get("below_fermi") and
                self.args[1].assumptions0.get("below_fermi")):
            return True
        if (self.args[0].assumptions0.get("above_fermi")
                and self.args[1].assumptions0.get("above_fermi")):
            return True

        # if both indices are general we are True, else false
        return self.is_below_fermi and self.is_above_fermi

    @property
    def preferred_index(self):
        """
        Returns the index which is preferred to keep in the final expression.

        Explanation
        ===========

        The preferred index is the index with more information regarding fermi
        level. If indices contain the same information, 'a' is preferred before
        'b'.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> j = Symbol('j', below_fermi=True)
        >>> p = Symbol('p')
        >>> KroneckerDelta(p, i).preferred_index
        i
        >>> KroneckerDelta(p, a).preferred_index
        a
        >>> KroneckerDelta(i, j).preferred_index
        i

        See Also
        ========

        killable_index

        """
        if self._get_preferred_index():
            return self.args[1]
        else:
            return self.args[0]

    @property
    def killable_index(self):
        """
        Returns the index which is preferred to substitute in the final
        expression.

        Explanation
        ===========

        The index to substitute is the index with less information regarding
        fermi level. If indices contain the same information, 'a' is preferred
        before 'b'.

        Examples
        ========

        >>> from sympy import KroneckerDelta, Symbol
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> j = Symbol('j', below_fermi=True)
        >>> p = Symbol('p')
        >>> KroneckerDelta(p, i).killable_index
        p
        >>> KroneckerDelta(p, a).killable_index
        p
        >>> KroneckerDelta(i, j).killable_index
        j

        See Also
        ========

        preferred_index

        """
        if self._get_preferred_index():
            return self.args[0]
        else:
            return self.args[1]

    def _get_preferred_index(self):
        """
        Returns the index which is preferred to keep in the final expression.

        The preferred index is the index with more information regarding fermi
        level. If indices contain the same information, index 0 is returned.

        """
        if not self.is_above_fermi:
            if self.args[0].assumptions0.get("below_fermi"):
                return 0
            else:
                return 1
        elif not self.is_below_fermi:
            if self.args[0].assumptions0.get("above_fermi"):
                return 0
            else:
                return 1
        else:
            return 0

    @property
    def indices(self):
        return self.args[0:2]

    def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
        i, j = args
        return Piecewise((0, Ne(i, j)), (1, True))