File size: 17,148 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import itertools as it

from sympy.core.expr import unchanged
from sympy.core.function import Function
from sympy.core.numbers import I, oo, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.external import import_module
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
                                                      Max, real_root, Rem)
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.delta_functions import Heaviside

from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import raises, skip, ignore_warnings

def test_Min():
    from sympy.abc import x, y, z
    n = Symbol('n', negative=True)
    n_ = Symbol('n_', negative=True)
    nn = Symbol('nn', nonnegative=True)
    nn_ = Symbol('nn_', nonnegative=True)
    p = Symbol('p', positive=True)
    p_ = Symbol('p_', positive=True)
    np = Symbol('np', nonpositive=True)
    np_ = Symbol('np_', nonpositive=True)
    r = Symbol('r', real=True)

    assert Min(5, 4) == 4
    assert Min(-oo, -oo) is -oo
    assert Min(-oo, n) is -oo
    assert Min(n, -oo) is -oo
    assert Min(-oo, np) is -oo
    assert Min(np, -oo) is -oo
    assert Min(-oo, 0) is -oo
    assert Min(0, -oo) is -oo
    assert Min(-oo, nn) is -oo
    assert Min(nn, -oo) is -oo
    assert Min(-oo, p) is -oo
    assert Min(p, -oo) is -oo
    assert Min(-oo, oo) is -oo
    assert Min(oo, -oo) is -oo
    assert Min(n, n) == n
    assert unchanged(Min, n, np)
    assert Min(np, n) == Min(n, np)
    assert Min(n, 0) == n
    assert Min(0, n) == n
    assert Min(n, nn) == n
    assert Min(nn, n) == n
    assert Min(n, p) == n
    assert Min(p, n) == n
    assert Min(n, oo) == n
    assert Min(oo, n) == n
    assert Min(np, np) == np
    assert Min(np, 0) == np
    assert Min(0, np) == np
    assert Min(np, nn) == np
    assert Min(nn, np) == np
    assert Min(np, p) == np
    assert Min(p, np) == np
    assert Min(np, oo) == np
    assert Min(oo, np) == np
    assert Min(0, 0) == 0
    assert Min(0, nn) == 0
    assert Min(nn, 0) == 0
    assert Min(0, p) == 0
    assert Min(p, 0) == 0
    assert Min(0, oo) == 0
    assert Min(oo, 0) == 0
    assert Min(nn, nn) == nn
    assert unchanged(Min, nn, p)
    assert Min(p, nn) == Min(nn, p)
    assert Min(nn, oo) == nn
    assert Min(oo, nn) == nn
    assert Min(p, p) == p
    assert Min(p, oo) == p
    assert Min(oo, p) == p
    assert Min(oo, oo) is oo

    assert Min(n, n_).func is Min
    assert Min(nn, nn_).func is Min
    assert Min(np, np_).func is Min
    assert Min(p, p_).func is Min

    # lists
    assert Min() is S.Infinity
    assert Min(x) == x
    assert Min(x, y) == Min(y, x)
    assert Min(x, y, z) == Min(z, y, x)
    assert Min(x, Min(y, z)) == Min(z, y, x)
    assert Min(x, Max(y, -oo)) == Min(x, y)
    assert Min(p, oo, n, p, p, p_) == n
    assert Min(p_, n_, p) == n_
    assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
    assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
    assert Min(0, x, 1, y) == Min(0, x, y)
    assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
    assert unchanged(Min, sin(x), cos(x))
    assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
    assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
    assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
    raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
    raises(ValueError, lambda: Min(I))
    raises(ValueError, lambda: Min(I, x))
    raises(ValueError, lambda: Min(S.ComplexInfinity, x))

    assert Min(1, x).diff(x) == Heaviside(1 - x)
    assert Min(x, 1).diff(x) == Heaviside(1 - x)
    assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
        - 2*Heaviside(2*x + Min(0, -x) - 1)

    # issue 7619
    f = Function('f')
    assert Min(1, 2*Min(f(1), 2))  # doesn't fail

    # issue 7233
    e = Min(0, x)
    assert e.n().args == (0, x)

    # issue 8643
    m = Min(n, p_, n_, r)
    assert m.is_positive is False
    assert m.is_nonnegative is False
    assert m.is_negative is True

    m = Min(p, p_)
    assert m.is_positive is True
    assert m.is_nonnegative is True
    assert m.is_negative is False

    m = Min(p, nn_, p_)
    assert m.is_positive is None
    assert m.is_nonnegative is True
    assert m.is_negative is False

    m = Min(nn, p, r)
    assert m.is_positive is None
    assert m.is_nonnegative is None
    assert m.is_negative is None


def test_Max():
    from sympy.abc import x, y, z
    n = Symbol('n', negative=True)
    n_ = Symbol('n_', negative=True)
    nn = Symbol('nn', nonnegative=True)
    p = Symbol('p', positive=True)
    p_ = Symbol('p_', positive=True)
    r = Symbol('r', real=True)

    assert Max(5, 4) == 5

    # lists

    assert Max() is S.NegativeInfinity
    assert Max(x) == x
    assert Max(x, y) == Max(y, x)
    assert Max(x, y, z) == Max(z, y, x)
    assert Max(x, Max(y, z)) == Max(z, y, x)
    assert Max(x, Min(y, oo)) == Max(x, y)
    assert Max(n, -oo, n_, p, 2) == Max(p, 2)
    assert Max(n, -oo, n_, p) == p
    assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
    assert Max(0, x, 1, y) == Max(1, x, y)
    assert Max(r, r + 1, r - 1) == 1 + r
    assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
    assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
    assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
    assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half)
    raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
    raises(ValueError, lambda: Max(I))
    raises(ValueError, lambda: Max(I, x))
    raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
    assert Max(n, -oo, n_,  p, 2) == Max(p, 2)
    assert Max(n, -oo, n_,  p, 1000) == Max(p, 1000)

    assert Max(1, x).diff(x) == Heaviside(x - 1)
    assert Max(x, 1).diff(x) == Heaviside(x - 1)
    assert Max(x**2, 1 + x, 1).diff(x) == \
        2*x*Heaviside(x**2 - Max(1, x + 1)) \
        + Heaviside(x - Max(1, x**2) + 1)

    e = Max(0, x)
    assert e.n().args == (0, x)

    # issue 8643
    m = Max(p, p_, n, r)
    assert m.is_positive is True
    assert m.is_nonnegative is True
    assert m.is_negative is False

    m = Max(n, n_)
    assert m.is_positive is False
    assert m.is_nonnegative is False
    assert m.is_negative is True

    m = Max(n, n_, r)
    assert m.is_positive is None
    assert m.is_nonnegative is None
    assert m.is_negative is None

    m = Max(n, nn, r)
    assert m.is_positive is None
    assert m.is_nonnegative is True
    assert m.is_negative is False


def test_minmax_assumptions():
    r = Symbol('r', real=True)
    a = Symbol('a', real=True, algebraic=True)
    t = Symbol('t', real=True, transcendental=True)
    q = Symbol('q', rational=True)
    p = Symbol('p', irrational=True)
    n = Symbol('n', rational=True, integer=False)
    i = Symbol('i', integer=True)
    o = Symbol('o', odd=True)
    e = Symbol('e', even=True)
    k = Symbol('k', prime=True)
    reals = [r, a, t, q, p, n, i, o, e, k]

    for ext in (Max, Min):
        for x, y in it.product(reals, repeat=2):

            # Must be real
            assert ext(x, y).is_real

            # Algebraic?
            if x.is_algebraic and y.is_algebraic:
                assert ext(x, y).is_algebraic
            elif x.is_transcendental and y.is_transcendental:
                assert ext(x, y).is_transcendental
            else:
                assert ext(x, y).is_algebraic is None

            # Rational?
            if x.is_rational and y.is_rational:
                assert ext(x, y).is_rational
            elif x.is_irrational and y.is_irrational:
                assert ext(x, y).is_irrational
            else:
                assert ext(x, y).is_rational is None

            # Integer?
            if x.is_integer and y.is_integer:
                assert ext(x, y).is_integer
            elif x.is_noninteger and y.is_noninteger:
                assert ext(x, y).is_noninteger
            else:
                assert ext(x, y).is_integer is None

            # Odd?
            if x.is_odd and y.is_odd:
                assert ext(x, y).is_odd
            elif x.is_odd is False and y.is_odd is False:
                assert ext(x, y).is_odd is False
            else:
                assert ext(x, y).is_odd is None

            # Even?
            if x.is_even and y.is_even:
                assert ext(x, y).is_even
            elif x.is_even is False and y.is_even is False:
                assert ext(x, y).is_even is False
            else:
                assert ext(x, y).is_even is None

            # Prime?
            if x.is_prime and y.is_prime:
                assert ext(x, y).is_prime
            elif x.is_prime is False and y.is_prime is False:
                assert ext(x, y).is_prime is False
            else:
                assert ext(x, y).is_prime is None


def test_issue_8413():
    x = Symbol('x', real=True)
    # we can't evaluate in general because non-reals are not
    # comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
    assert Min(floor(x), x) == floor(x)
    assert Min(ceiling(x), x) == x
    assert Max(floor(x), x) == x
    assert Max(ceiling(x), x) == ceiling(x)


def test_root():
    from sympy.abc import x
    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)

    assert root(2, 2) == sqrt(2)
    assert root(2, 1) == 2
    assert root(2, 3) == 2**Rational(1, 3)
    assert root(2, 3) == cbrt(2)
    assert root(2, -5) == 2**Rational(4, 5)/2

    assert root(-2, 1) == -2

    assert root(-2, 2) == sqrt(2)*I
    assert root(-2, 1) == -2

    assert root(x, 2) == sqrt(x)
    assert root(x, 1) == x
    assert root(x, 3) == x**Rational(1, 3)
    assert root(x, 3) == cbrt(x)
    assert root(x, -5) == x**Rational(-1, 5)

    assert root(x, n) == x**(1/n)
    assert root(x, -n) == x**(-1/n)

    assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)


def test_real_root():
    assert real_root(-8, 3) == -2
    assert real_root(-16, 4) == root(-16, 4)
    r = root(-7, 4)
    assert real_root(r) == r
    r1 = root(-1, 3)
    r2 = r1**2
    r3 = root(-1, 4)
    assert real_root(r1 + r2 + r3) == -1 + r2 + r3
    assert real_root(root(-2, 3)) == -root(2, 3)
    assert real_root(-8., 3) == -2.0
    x = Symbol('x')
    n = Symbol('n')
    g = real_root(x, n)
    assert g.subs({"x": -8, "n": 3}) == -2
    assert g.subs({"x": 8, "n": 3}) == 2
    # give principle root if there is no real root -- if this is not desired
    # then maybe a Root class is needed to raise an error instead
    assert g.subs({"x": I, "n": 3}) == cbrt(I)
    assert g.subs({"x": -8, "n": 2}) == sqrt(-8)
    assert g.subs({"x": I, "n": 2}) == sqrt(I)


def test_issue_11463():
    numpy = import_module('numpy')
    if not numpy:
        skip("numpy not installed.")
    x = Symbol('x')
    f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
    # numpy.select evaluates all options before considering conditions,
    # so it raises a warning about root of negative number which does
    # not affect the outcome. This warning is suppressed here
    with ignore_warnings(RuntimeWarning):
        assert f(numpy.array(-1)) < -1


def test_rewrite_MaxMin_as_Heaviside():
    from sympy.abc import x
    assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
    assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
        3*Heaviside(-x + 3)
    assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
        2*x*Heaviside(2*x)*Heaviside(x - 2) + \
        (x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)

    assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
    assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
        3*Heaviside(x - 3)
    assert Min(x, -x, -2).rewrite(Heaviside) == \
        x*Heaviside(-2*x)*Heaviside(-x - 2) - \
        x*Heaviside(2*x)*Heaviside(x - 2) \
        - 2*Heaviside(-x + 2)*Heaviside(x + 2)


def test_rewrite_MaxMin_as_Piecewise():
    from sympy.core.symbol import symbols
    from sympy.functions.elementary.piecewise import Piecewise
    x, y, z, a, b = symbols('x y z a b', real=True)
    vx, vy, va = symbols('vx vy va')
    assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
    assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
    assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
        (b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
    assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
    assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
    assert Min(x,  y, a, b).rewrite(Piecewise) ==  Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
        (b, (b <= x) & (b <= y)), (x, x <= y), (y, True))

    # Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments
    assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True))
    assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True))


def test_issue_11099():
    from sympy.abc import x, y
    # some fixed value tests
    fixed_test_data = {x: -2, y: 3}
    assert Min(x, y).evalf(subs=fixed_test_data) == \
        Min(x, y).subs(fixed_test_data).evalf()
    assert Max(x, y).evalf(subs=fixed_test_data) == \
        Max(x, y).subs(fixed_test_data).evalf()
    # randomly generate some test data
    from sympy.core.random import randint
    for i in range(20):
        random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
        assert Min(x, y).evalf(subs=random_test_data) == \
            Min(x, y).subs(random_test_data).evalf()
        assert Max(x, y).evalf(subs=random_test_data) == \
            Max(x, y).subs(random_test_data).evalf()


def test_issue_12638():
    from sympy.abc import a, b, c
    assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
    assert Min(a, b, Max(a, b, c)) == Min(a, b)
    assert Min(a, b, Max(a, c)) == Min(a, b)

def test_issue_21399():
    from sympy.abc import a, b, c
    assert Max(Min(a, b), Min(a, b, c)) == Min(a, b)


def test_instantiation_evaluation():
    from sympy.abc import v, w, x, y, z
    assert Min(1, Max(2, x)) == 1
    assert Max(3, Min(2, x)) == 3
    assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
    assert set(Min(Max(w, x), Max(y, z)).args) == {
        Max(w, x), Max(y, z)}
    assert Min(Max(x, y), Max(x, z), w) == Min(
        w, Max(x, Min(y, z)))
    A, B = Min, Max
    for i in range(2):
        assert A(x, B(x, y)) == x
        assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
        A, B = B, A
    assert Min(w, Max(x, y), Max(v, x, z)) == Min(
        w, Max(x, Min(y, Max(v, z))))

def test_rewrite_as_Abs():
    from itertools import permutations
    from sympy.functions.elementary.complexes import Abs
    from sympy.abc import x, y, z, w
    def test(e):
        free = e.free_symbols
        a = e.rewrite(Abs)
        assert not a.has(Min, Max)
        for i in permutations(range(len(free))):
            reps = dict(zip(free, i))
            assert a.xreplace(reps) == e.xreplace(reps)
    test(Min(x, y))
    test(Max(x, y))
    test(Min(x, y, z))
    test(Min(Max(w, x), Max(y, z)))

def test_issue_14000():
    assert isinstance(sqrt(4, evaluate=False), Pow) == True
    assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
    assert isinstance(root(16, 4, evaluate=False), Pow) == True

    assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
    assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
    assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)

    assert root(16, 4, 2, evaluate=False).has(Pow) == True
    assert real_root(-8, 3, evaluate=False).has(Pow) == True

def test_issue_6899():
    from sympy.core.function import Lambda
    x = Symbol('x')
    eqn = Lambda(x, x)
    assert eqn.func(*eqn.args) == eqn

def test_Rem():
    from sympy.abc import x, y
    assert Rem(5, 3) == 2
    assert Rem(-5, 3) == -2
    assert Rem(5, -3) == 2
    assert Rem(-5, -3) == -2
    assert Rem(x**3, y) == Rem(x**3, y)
    assert Rem(Rem(-5, 3) + 3, 3) == 1


def test_minmax_no_evaluate():
    from sympy import evaluate
    p = Symbol('p', positive=True)

    assert Max(1, 3) == 3
    assert Max(1, 3).args == ()
    assert Max(0, p) == p
    assert Max(0, p).args == ()
    assert Min(0, p) == 0
    assert Min(0, p).args == ()

    assert Max(1, 3, evaluate=False) != 3
    assert Max(1, 3, evaluate=False).args == (1, 3)
    assert Max(0, p, evaluate=False) != p
    assert Max(0, p, evaluate=False).args == (0, p)
    assert Min(0, p, evaluate=False) != 0
    assert Min(0, p, evaluate=False).args == (0, p)

    with evaluate(False):
        assert Max(1, 3) != 3
        assert Max(1, 3).args == (1, 3)
        assert Max(0, p) != p
        assert Max(0, p).args == (0, p)
        assert Min(0, p) != 0
        assert Min(0, p).args == (0, p)