File size: 22,315 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, tan
from sympy.polys.rootoftools import RootOf, CRootOf
from sympy import Integers
from sympy.sets.sets import Interval
from sympy.sets.fancysets import ImageSet
from sympy.core.function import Lambda

from sympy.core.expr import unchanged
from sympy.testing.pytest import XFAIL, raises

x = Symbol('x')
i = Symbol('i', imaginary=True)
y = Symbol('y', real=True)
k, n = symbols('k,n', integer=True)


def test_floor():

    assert floor(nan) is nan

    assert floor(oo) is oo
    assert floor(-oo) is -oo
    assert floor(zoo) is zoo

    assert floor(0) == 0

    assert floor(1) == 1
    assert floor(-1) == -1

    assert floor(E) == 2
    assert floor(-E) == -3

    assert floor(2*E) == 5
    assert floor(-2*E) == -6

    assert floor(pi) == 3
    assert floor(-pi) == -4

    assert floor(S.Half) == 0
    assert floor(Rational(-1, 2)) == -1

    assert floor(Rational(7, 3)) == 2
    assert floor(Rational(-7, 3)) == -3
    assert floor(-Rational(7, 3)) == -3

    assert floor(Float(17.0)) == 17
    assert floor(-Float(17.0)) == -17

    assert floor(Float(7.69)) == 7
    assert floor(-Float(7.69)) == -8

    assert floor(I) == I
    assert floor(-I) == -I
    e = floor(i)
    assert e.func is floor and e.args[0] == i

    assert floor(oo*I) == oo*I
    assert floor(-oo*I) == -oo*I
    assert floor(exp(I*pi/4)*oo) == exp(I*pi/4)*oo

    assert floor(2*I) == 2*I
    assert floor(-2*I) == -2*I

    assert floor(I/2) == 0
    assert floor(-I/2) == -I

    assert floor(E + 17) == 19
    assert floor(pi + 2) == 5

    assert floor(E + pi) == 5
    assert floor(I + pi) == 3 + I

    assert floor(floor(pi)) == 3
    assert floor(floor(y)) == floor(y)
    assert floor(floor(x)) == floor(x)

    assert unchanged(floor, x)
    assert unchanged(floor, 2*x)
    assert unchanged(floor, k*x)

    assert floor(k) == k
    assert floor(2*k) == 2*k
    assert floor(k*n) == k*n

    assert unchanged(floor, k/2)

    assert unchanged(floor, x + y)

    assert floor(x + 3) == floor(x) + 3
    assert floor(x + k) == floor(x) + k

    assert floor(y + 3) == floor(y) + 3
    assert floor(y + k) == floor(y) + k

    assert floor(3 + I*y + pi) == 6 + floor(y)*I

    assert floor(k + n) == k + n

    assert unchanged(floor, x*I)
    assert floor(k*I) == k*I

    assert floor(Rational(23, 10) - E*I) == 2 - 3*I

    assert floor(sin(1)) == 0
    assert floor(sin(-1)) == -1

    assert floor(exp(2)) == 7

    assert floor(log(8)/log(2)) != 2
    assert int(floor(log(8)/log(2)).evalf(chop=True)) == 3

    assert floor(factorial(50)/exp(1)) == \
        11188719610782480504630258070757734324011354208865721592720336800

    assert (floor(y) < y) == False
    assert (floor(y) <= y) == True
    assert (floor(y) > y) == False
    assert (floor(y) >= y) == False
    assert (floor(x) <= x).is_Relational  # x could be non-real
    assert (floor(x) > x).is_Relational
    assert (floor(x) <= y).is_Relational  # arg is not same as rhs
    assert (floor(x) > y).is_Relational
    assert (floor(y) <= oo) == True
    assert (floor(y) < oo) == True
    assert (floor(y) >= -oo) == True
    assert (floor(y) > -oo) == True

    assert floor(y).rewrite(frac) == y - frac(y)
    assert floor(y).rewrite(ceiling) == -ceiling(-y)
    assert floor(y).rewrite(frac).subs(y, -pi) == floor(-pi)
    assert floor(y).rewrite(frac).subs(y, E) == floor(E)
    assert floor(y).rewrite(ceiling).subs(y, E) == -ceiling(-E)
    assert floor(y).rewrite(ceiling).subs(y, -pi) == -ceiling(pi)

    assert Eq(floor(y), y - frac(y))
    assert Eq(floor(y), -ceiling(-y))

    neg = Symbol('neg', negative=True)
    nn = Symbol('nn', nonnegative=True)
    pos = Symbol('pos', positive=True)
    np = Symbol('np', nonpositive=True)

    assert (floor(neg) < 0) == True
    assert (floor(neg) <= 0) == True
    assert (floor(neg) > 0) == False
    assert (floor(neg) >= 0) == False
    assert (floor(neg) <= -1) == True
    assert (floor(neg) >= -3) == (neg >= -3)
    assert (floor(neg) < 5) == (neg < 5)

    assert (floor(nn) < 0) == False
    assert (floor(nn) >= 0) == True

    assert (floor(pos) < 0) == False
    assert (floor(pos) <= 0) == (pos < 1)
    assert (floor(pos) > 0) == (pos >= 1)
    assert (floor(pos) >= 0) == True
    assert (floor(pos) >= 3) == (pos >= 3)

    assert (floor(np) <= 0) == True
    assert (floor(np) > 0) == False

    assert floor(neg).is_negative == True
    assert floor(neg).is_nonnegative == False
    assert floor(nn).is_negative == False
    assert floor(nn).is_nonnegative == True
    assert floor(pos).is_negative == False
    assert floor(pos).is_nonnegative == True
    assert floor(np).is_negative is None
    assert floor(np).is_nonnegative is None

    assert (floor(7, evaluate=False) >= 7) == True
    assert (floor(7, evaluate=False) > 7) == False
    assert (floor(7, evaluate=False) <= 7) == True
    assert (floor(7, evaluate=False) < 7) == False

    assert (floor(7, evaluate=False) >= 6) == True
    assert (floor(7, evaluate=False) > 6) == True
    assert (floor(7, evaluate=False) <= 6) == False
    assert (floor(7, evaluate=False) < 6) == False

    assert (floor(7, evaluate=False) >= 8) == False
    assert (floor(7, evaluate=False) > 8) == False
    assert (floor(7, evaluate=False) <= 8) == True
    assert (floor(7, evaluate=False) < 8) == True

    assert (floor(x) <= 5.5) == Le(floor(x), 5.5, evaluate=False)
    assert (floor(x) >= -3.2) == Ge(floor(x), -3.2, evaluate=False)
    assert (floor(x) < 2.9) == Lt(floor(x), 2.9, evaluate=False)
    assert (floor(x) > -1.7) == Gt(floor(x), -1.7, evaluate=False)

    assert (floor(y) <= 5.5) == (y < 6)
    assert (floor(y) >= -3.2) == (y >= -3)
    assert (floor(y) < 2.9) == (y < 3)
    assert (floor(y) > -1.7) == (y >= -1)

    assert (floor(y) <= n) == (y < n + 1)
    assert (floor(y) >= n) == (y >= n)
    assert (floor(y) < n) == (y < n)
    assert (floor(y) > n) == (y >= n + 1)

    assert floor(RootOf(x**3 - 27*x, 2)) == 5


def test_ceiling():

    assert ceiling(nan) is nan

    assert ceiling(oo) is oo
    assert ceiling(-oo) is -oo
    assert ceiling(zoo) is zoo

    assert ceiling(0) == 0

    assert ceiling(1) == 1
    assert ceiling(-1) == -1

    assert ceiling(E) == 3
    assert ceiling(-E) == -2

    assert ceiling(2*E) == 6
    assert ceiling(-2*E) == -5

    assert ceiling(pi) == 4
    assert ceiling(-pi) == -3

    assert ceiling(S.Half) == 1
    assert ceiling(Rational(-1, 2)) == 0

    assert ceiling(Rational(7, 3)) == 3
    assert ceiling(-Rational(7, 3)) == -2

    assert ceiling(Float(17.0)) == 17
    assert ceiling(-Float(17.0)) == -17

    assert ceiling(Float(7.69)) == 8
    assert ceiling(-Float(7.69)) == -7

    assert ceiling(I) == I
    assert ceiling(-I) == -I
    e = ceiling(i)
    assert e.func is ceiling and e.args[0] == i

    assert ceiling(oo*I) == oo*I
    assert ceiling(-oo*I) == -oo*I
    assert ceiling(exp(I*pi/4)*oo) == exp(I*pi/4)*oo

    assert ceiling(2*I) == 2*I
    assert ceiling(-2*I) == -2*I

    assert ceiling(I/2) == I
    assert ceiling(-I/2) == 0

    assert ceiling(E + 17) == 20
    assert ceiling(pi + 2) == 6

    assert ceiling(E + pi) == 6
    assert ceiling(I + pi) == I + 4

    assert ceiling(ceiling(pi)) == 4
    assert ceiling(ceiling(y)) == ceiling(y)
    assert ceiling(ceiling(x)) == ceiling(x)

    assert unchanged(ceiling, x)
    assert unchanged(ceiling, 2*x)
    assert unchanged(ceiling, k*x)

    assert ceiling(k) == k
    assert ceiling(2*k) == 2*k
    assert ceiling(k*n) == k*n

    assert unchanged(ceiling, k/2)

    assert unchanged(ceiling, x + y)

    assert ceiling(x + 3) == ceiling(x) + 3
    assert ceiling(x + 3.0) == ceiling(x) + 3
    assert ceiling(x + 3.0*I) == ceiling(x) + 3*I
    assert ceiling(x + k) == ceiling(x) + k

    assert ceiling(y + 3) == ceiling(y) + 3
    assert ceiling(y + k) == ceiling(y) + k

    assert ceiling(3 + pi + y*I) == 7 + ceiling(y)*I

    assert ceiling(k + n) == k + n

    assert unchanged(ceiling, x*I)
    assert ceiling(k*I) == k*I

    assert ceiling(Rational(23, 10) - E*I) == 3 - 2*I

    assert ceiling(sin(1)) == 1
    assert ceiling(sin(-1)) == 0

    assert ceiling(exp(2)) == 8

    assert ceiling(-log(8)/log(2)) != -2
    assert int(ceiling(-log(8)/log(2)).evalf(chop=True)) == -3

    assert ceiling(factorial(50)/exp(1)) == \
        11188719610782480504630258070757734324011354208865721592720336801

    assert (ceiling(y) >= y) == True
    assert (ceiling(y) > y) == False
    assert (ceiling(y) < y) == False
    assert (ceiling(y) <= y) == False
    assert (ceiling(x) >= x).is_Relational  # x could be non-real
    assert (ceiling(x) < x).is_Relational
    assert (ceiling(x) >= y).is_Relational  # arg is not same as rhs
    assert (ceiling(x) < y).is_Relational
    assert (ceiling(y) >= -oo) == True
    assert (ceiling(y) > -oo) == True
    assert (ceiling(y) <= oo) == True
    assert (ceiling(y) < oo) == True

    assert ceiling(y).rewrite(floor) == -floor(-y)
    assert ceiling(y).rewrite(frac) == y + frac(-y)
    assert ceiling(y).rewrite(floor).subs(y, -pi) == -floor(pi)
    assert ceiling(y).rewrite(floor).subs(y, E) == -floor(-E)
    assert ceiling(y).rewrite(frac).subs(y, pi) == ceiling(pi)
    assert ceiling(y).rewrite(frac).subs(y, -E) == ceiling(-E)

    assert Eq(ceiling(y), y + frac(-y))
    assert Eq(ceiling(y), -floor(-y))

    neg = Symbol('neg', negative=True)
    nn = Symbol('nn', nonnegative=True)
    pos = Symbol('pos', positive=True)
    np = Symbol('np', nonpositive=True)

    assert (ceiling(neg) <= 0) == True
    assert (ceiling(neg) < 0) == (neg <= -1)
    assert (ceiling(neg) > 0) == False
    assert (ceiling(neg) >= 0) == (neg > -1)
    assert (ceiling(neg) > -3) == (neg > -3)
    assert (ceiling(neg) <= 10) == (neg <= 10)

    assert (ceiling(nn) < 0) == False
    assert (ceiling(nn) >= 0) == True

    assert (ceiling(pos) < 0) == False
    assert (ceiling(pos) <= 0) == False
    assert (ceiling(pos) > 0) == True
    assert (ceiling(pos) >= 0) == True
    assert (ceiling(pos) >= 1) == True
    assert (ceiling(pos) > 5) == (pos > 5)

    assert (ceiling(np) <= 0) == True
    assert (ceiling(np) > 0) == False

    assert ceiling(neg).is_positive == False
    assert ceiling(neg).is_nonpositive == True
    assert ceiling(nn).is_positive is None
    assert ceiling(nn).is_nonpositive is None
    assert ceiling(pos).is_positive == True
    assert ceiling(pos).is_nonpositive == False
    assert ceiling(np).is_positive == False
    assert ceiling(np).is_nonpositive == True

    assert (ceiling(7, evaluate=False) >= 7) == True
    assert (ceiling(7, evaluate=False) > 7) == False
    assert (ceiling(7, evaluate=False) <= 7) == True
    assert (ceiling(7, evaluate=False) < 7) == False

    assert (ceiling(7, evaluate=False) >= 6) == True
    assert (ceiling(7, evaluate=False) > 6) == True
    assert (ceiling(7, evaluate=False) <= 6) == False
    assert (ceiling(7, evaluate=False) < 6) == False

    assert (ceiling(7, evaluate=False) >= 8) == False
    assert (ceiling(7, evaluate=False) > 8) == False
    assert (ceiling(7, evaluate=False) <= 8) == True
    assert (ceiling(7, evaluate=False) < 8) == True

    assert (ceiling(x) <= 5.5) == Le(ceiling(x), 5.5, evaluate=False)
    assert (ceiling(x) >= -3.2) == Ge(ceiling(x), -3.2, evaluate=False)
    assert (ceiling(x) < 2.9) == Lt(ceiling(x), 2.9, evaluate=False)
    assert (ceiling(x) > -1.7) == Gt(ceiling(x), -1.7, evaluate=False)

    assert (ceiling(y) <= 5.5) == (y <= 5)
    assert (ceiling(y) >= -3.2) == (y > -4)
    assert (ceiling(y) < 2.9) == (y <= 2)
    assert (ceiling(y) > -1.7) == (y > -2)

    assert (ceiling(y) <= n) == (y <= n)
    assert (ceiling(y) >= n) == (y > n - 1)
    assert (ceiling(y) < n) == (y <= n - 1)
    assert (ceiling(y) > n) == (y > n)

    assert ceiling(RootOf(x**3 - 27*x, 2)) == 6
    s = ImageSet(Lambda(n, n + (CRootOf(x**5 - x**2 + 1, 0))), Integers)
    f = CRootOf(x**5 - x**2 + 1, 0)
    s = ImageSet(Lambda(n, n + f), Integers)
    assert s.intersect(Interval(-10, 10)) == {i + f for i in range(-9, 11)}


def test_frac():
    assert isinstance(frac(x), frac)
    assert frac(oo) == AccumBounds(0, 1)
    assert frac(-oo) == AccumBounds(0, 1)
    assert frac(zoo) is nan

    assert frac(n) == 0
    assert frac(nan) is nan
    assert frac(Rational(4, 3)) == Rational(1, 3)
    assert frac(-Rational(4, 3)) == Rational(2, 3)
    assert frac(Rational(-4, 3)) == Rational(2, 3)

    r = Symbol('r', real=True)
    assert frac(I*r) == I*frac(r)
    assert frac(1 + I*r) == I*frac(r)
    assert frac(0.5 + I*r) == 0.5 + I*frac(r)
    assert frac(n + I*r) == I*frac(r)
    assert frac(n + I*k) == 0
    assert unchanged(frac, x + I*x)
    assert frac(x + I*n) == frac(x)

    assert frac(x).rewrite(floor) == x - floor(x)
    assert frac(x).rewrite(ceiling) == x + ceiling(-x)
    assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
    assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
    assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
    assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)

    assert Eq(frac(y), y - floor(y))
    assert Eq(frac(y), y + ceiling(-y))

    r = Symbol('r', real=True)
    p_i = Symbol('p_i', integer=True, positive=True)
    n_i = Symbol('p_i', integer=True, negative=True)
    np_i = Symbol('np_i', integer=True, nonpositive=True)
    nn_i = Symbol('nn_i', integer=True, nonnegative=True)
    p_r = Symbol('p_r', positive=True)
    n_r = Symbol('n_r', negative=True)
    np_r = Symbol('np_r', real=True, nonpositive=True)
    nn_r = Symbol('nn_r', real=True, nonnegative=True)

    # Real frac argument, integer rhs
    assert frac(r) <= p_i
    assert not frac(r) <= n_i
    assert (frac(r) <= np_i).has(Le)
    assert (frac(r) <= nn_i).has(Le)
    assert frac(r) < p_i
    assert not frac(r) < n_i
    assert not frac(r) < np_i
    assert (frac(r) < nn_i).has(Lt)
    assert not frac(r) >= p_i
    assert frac(r) >= n_i
    assert frac(r) >= np_i
    assert (frac(r) >= nn_i).has(Ge)
    assert not frac(r) > p_i
    assert frac(r) > n_i
    assert (frac(r) > np_i).has(Gt)
    assert (frac(r) > nn_i).has(Gt)

    assert not Eq(frac(r), p_i)
    assert not Eq(frac(r), n_i)
    assert Eq(frac(r), np_i).has(Eq)
    assert Eq(frac(r), nn_i).has(Eq)

    assert Ne(frac(r), p_i)
    assert Ne(frac(r), n_i)
    assert Ne(frac(r), np_i).has(Ne)
    assert Ne(frac(r), nn_i).has(Ne)


    # Real frac argument, real rhs
    assert (frac(r) <= p_r).has(Le)
    assert not frac(r) <= n_r
    assert (frac(r) <= np_r).has(Le)
    assert (frac(r) <= nn_r).has(Le)
    assert (frac(r) < p_r).has(Lt)
    assert not frac(r) < n_r
    assert not frac(r) < np_r
    assert (frac(r) < nn_r).has(Lt)
    assert (frac(r) >= p_r).has(Ge)
    assert frac(r) >= n_r
    assert frac(r) >= np_r
    assert (frac(r) >= nn_r).has(Ge)
    assert (frac(r) > p_r).has(Gt)
    assert frac(r) > n_r
    assert (frac(r) > np_r).has(Gt)
    assert (frac(r) > nn_r).has(Gt)

    assert not Eq(frac(r), n_r)
    assert Eq(frac(r), p_r).has(Eq)
    assert Eq(frac(r), np_r).has(Eq)
    assert Eq(frac(r), nn_r).has(Eq)

    assert Ne(frac(r), p_r).has(Ne)
    assert Ne(frac(r), n_r)
    assert Ne(frac(r), np_r).has(Ne)
    assert Ne(frac(r), nn_r).has(Ne)

    # Real frac argument, +/- oo rhs
    assert frac(r) < oo
    assert frac(r) <= oo
    assert not frac(r) > oo
    assert not frac(r) >= oo

    assert not frac(r) < -oo
    assert not frac(r) <= -oo
    assert frac(r) > -oo
    assert frac(r) >= -oo

    assert frac(r) < 1
    assert frac(r) <= 1
    assert not frac(r) > 1
    assert not frac(r) >= 1

    assert not frac(r) < 0
    assert (frac(r) <= 0).has(Le)
    assert (frac(r) > 0).has(Gt)
    assert frac(r) >= 0

    # Some test for numbers
    assert frac(r) <= sqrt(2)
    assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
    assert not frac(r) <= sqrt(2) - sqrt(3)
    assert not frac(r) >= sqrt(2)
    assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
    assert frac(r) >= sqrt(2) - sqrt(3)

    assert not Eq(frac(r), sqrt(2))
    assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
    assert not Eq(frac(r), sqrt(2) - sqrt(3))
    assert Ne(frac(r), sqrt(2))
    assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
    assert Ne(frac(r), sqrt(2) - sqrt(3))

    assert frac(p_i, evaluate=False).is_zero
    assert frac(p_i, evaluate=False).is_finite
    assert frac(p_i, evaluate=False).is_integer
    assert frac(p_i, evaluate=False).is_real
    assert frac(r).is_finite
    assert frac(r).is_real
    assert frac(r).is_zero is None
    assert frac(r).is_integer is None

    assert frac(oo).is_finite
    assert frac(oo).is_real


def test_series():
    x, y = symbols('x,y')
    assert floor(x).nseries(x, y, 100) == floor(y)
    assert ceiling(x).nseries(x, y, 100) == ceiling(y)
    assert floor(x).nseries(x, pi, 100) == 3
    assert ceiling(x).nseries(x, pi, 100) == 4
    assert floor(x).nseries(x, 0, 100) == 0
    assert ceiling(x).nseries(x, 0, 100) == 1
    assert floor(-x).nseries(x, 0, 100) == -1
    assert ceiling(-x).nseries(x, 0, 100) == 0


def test_issue_14355():
    # This test checks the leading term and series for the floor and ceil
    # function when arg0 evaluates to S.NaN.
    assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -2
    assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == -1
    assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == -1
    assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 0
    assert floor(sin(x)/x).as_leading_term(x, cdir = 1) == 0
    assert floor(sin(x)/x).as_leading_term(x, cdir = -1) == 0
    assert floor(-tan(x)/x).as_leading_term(x, cdir = 1) == -2
    assert floor(-tan(x)/x).as_leading_term(x, cdir = -1) == -2
    assert floor(sin(x)/x/3).as_leading_term(x, cdir = 1) == 0
    assert floor(sin(x)/x/3).as_leading_term(x, cdir = -1) == 0
    assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -1
    assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == 0
    assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == 0
    assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 1
    assert ceiling(sin(x)/x).as_leading_term(x, cdir = 1) == 1
    assert ceiling(sin(x)/x).as_leading_term(x, cdir = -1) == 1
    assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
    assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
    assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = 1) == 1
    assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = -1) == 1
    # test for series
    assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
    assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
    assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -2
    assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == -1
    assert ceiling(sin(x)/x).series(x, 0, 100, cdir = 1) == 1
    assert ceiling(sin(x)/x).series(x, 0, 100, cdir = -1) == 1
    assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -1
    assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == 0


def test_frac_leading_term():
    assert frac(x).as_leading_term(x) == x
    assert frac(x).as_leading_term(x, cdir = 1) == x
    assert frac(x).as_leading_term(x, cdir = -1) == 1
    assert frac(x + S.Half).as_leading_term(x, cdir = 1) == S.Half
    assert frac(x + S.Half).as_leading_term(x, cdir = -1) == S.Half
    assert frac(-2*x + 1).as_leading_term(x, cdir = 1) == S.One
    assert frac(-2*x + 1).as_leading_term(x, cdir = -1) == -2*x
    assert frac(sin(x) + 5).as_leading_term(x, cdir = 1) == x
    assert frac(sin(x) + 5).as_leading_term(x, cdir = -1) == S.One
    assert frac(sin(x**2) + 5).as_leading_term(x, cdir = 1) == x**2
    assert frac(sin(x**2) + 5).as_leading_term(x, cdir = -1) == x**2


@XFAIL
def test_issue_4149():
    assert floor(3 + pi*I + y*I) == 3 + floor(pi + y)*I
    assert floor(3*I + pi*I + y*I) == floor(3 + pi + y)*I
    assert floor(3 + E + pi*I + y*I) == 5 + floor(pi + y)*I


def test_issue_21651():
    k = Symbol('k', positive=True, integer=True)
    exp = 2*2**(-k)
    assert isinstance(floor(exp), floor)


def test_issue_11207():
    assert floor(floor(x)) == floor(x)
    assert floor(ceiling(x)) == ceiling(x)
    assert ceiling(floor(x)) == floor(x)
    assert ceiling(ceiling(x)) == ceiling(x)


def test_nested_floor_ceiling():
    assert floor(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
    assert ceiling(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
    assert floor(ceiling(-floor(x**Rational(7, 2)/y))) == -floor(x**Rational(7, 2)/y)
    assert -ceiling(-ceiling(floor(x)/y)) == ceiling(floor(x)/y)

def test_issue_18689():
    assert floor(floor(floor(x)) + 3) == floor(x) + 3
    assert ceiling(ceiling(ceiling(x)) + 1) == ceiling(x) + 1
    assert ceiling(ceiling(floor(x)) + 3) == floor(x) + 3

def test_issue_18421():
    assert floor(float(0)) is S.Zero
    assert ceiling(float(0)) is S.Zero

def test_issue_25230():
    a = Symbol('a', real = True)
    b = Symbol('b', positive = True)
    c = Symbol('c', negative = True)
    raises(NotImplementedError, lambda: floor(x/a).as_leading_term(x, cdir = 1))
    raises(NotImplementedError, lambda: ceiling(x/a).as_leading_term(x, cdir = 1))
    assert floor(x/b).as_leading_term(x, cdir = 1) == 0
    assert floor(x/b).as_leading_term(x, cdir = -1) == -1
    assert floor(x/c).as_leading_term(x, cdir = 1) == -1
    assert floor(x/c).as_leading_term(x, cdir = -1) == 0
    assert ceiling(x/b).as_leading_term(x, cdir = 1) == 1
    assert ceiling(x/b).as_leading_term(x, cdir = -1) == 0
    assert ceiling(x/c).as_leading_term(x, cdir = 1) == 0
    assert ceiling(x/c).as_leading_term(x, cdir = -1) == 1