File size: 33,878 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function, Lambda, expand)
from sympy.core.numbers import (E, I, Rational, comp, nan, oo, pi, zoo)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, sign, transpose)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, atan, atan2, cos, sin)
from sympy.functions.elementary.hyperbolic import sinh
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
from sympy.integrals.integrals import Integral
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.immutable import (ImmutableMatrix, ImmutableSparseMatrix)
from sympy.matrices import SparseMatrix
from sympy.sets.sets import Interval
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow


def N_equals(a, b):
    """Check whether two complex numbers are numerically close"""
    return comp(a.n(), b.n(), 1.e-6)


def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) is nan

    assert re(oo) is oo
    assert re(-oo) is -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert unchanged(re, x)
    assert re(x*I) == -im(x)
    assert re(r*I) == 0
    assert re(r) == r
    assert re(i*I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x) + re(y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y*I) == re(x) - im(y)
    assert re(x + r*I) == re(x)

    assert re(log(2*I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i*r*x).diff(r) == re(i*x)
    assert re(i*r*x).diff(i) == I*r*im(x)

    assert re(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
    assert re(a * (2 + b*I)) == 2*a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half

    assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert re(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)
    assert re(A) == (S.Half) * (A + conjugate(A))

    A = Matrix([[1 + 4*I,2],[0, -3*I]])
    assert re(A) == Matrix([[1, 2],[0, 0]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])

    X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
    assert re(X) - Matrix([[0, 0, 0, 0, 0],
                           [2, 2, 2, 2, 2],
                           [4, 4, 4, 4, 4],
                           [6, 6, 6, 6, 6],
                           [8, 8, 8, 8, 8]]) == Matrix.zeros(5)

    assert im(X) - Matrix([[0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4]]) == Matrix.zeros(5)

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])


def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) is nan

    assert im(oo*I) is oo
    assert im(-oo*I) is -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E*I) == E
    assert im(-E*I) == -E

    assert unchanged(im, x)
    assert im(x*I) == re(x)
    assert im(r*I) == r
    assert im(r) == 0
    assert im(i*I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x) + im(y)
    assert im(x + r) == im(x)
    assert im(x + r*I) == im(x) + r

    assert im(im(x)*I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y*I) == im(x) + re(y)
    assert im(x + r*I) == im(x) + r

    assert im(log(2*I)) == pi/2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i*r*x).diff(r) == im(i*x)
    assert im(i*r*x).diff(i) == -I * re(r*x)

    assert im(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
    assert im(a * (2 + b*I)) == a*b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
    assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert im(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)

    assert im(A) == (S.One/(2*I)) * (A - conjugate(A))

    A = Matrix([[1 + 4*I, 2],[0, -3*I]])
    assert im(A) == Matrix([[4, 0],[0, -3]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])

    X = ImmutableSparseMatrix(
            [[i*I + i for i in range(5)] for i in range(5)])
    Y = SparseMatrix([list(range(5)) for i in range(5)])
    assert im(X).as_immutable() == Y

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])

def test_sign():
    assert sign(1.2) == 1
    assert sign(-1.2) == -1
    assert sign(3*I) == I
    assert sign(-3*I) == -I
    assert sign(0) == 0
    assert sign(0, evaluate=False).doit() == 0
    assert sign(oo, evaluate=False).doit() == 1
    assert sign(nan) is nan
    assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
    assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
    assert sign(2 + 2*I).simplify() == sign(1 + I)
    assert sign(im(sqrt(1 - sqrt(3)))) == 1
    assert sign(sqrt(1 - sqrt(3))) == I

    x = Symbol('x')
    assert sign(x).is_finite is True
    assert sign(x).is_complex is True
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_real is None
    assert sign(x).is_zero is None
    assert sign(x).doit() == sign(x)
    assert sign(1.2*x) == sign(x)
    assert sign(2*x) == sign(x)
    assert sign(I*x) == I*sign(x)
    assert sign(-2*I*x) == -I*sign(x)
    assert sign(conjugate(x)) == conjugate(sign(x))

    p = Symbol('p', positive=True)
    n = Symbol('n', negative=True)
    m = Symbol('m', negative=True)
    assert sign(2*p*x) == sign(x)
    assert sign(n*x) == -sign(x)
    assert sign(n*m*x) == sign(x)

    x = Symbol('x', imaginary=True)
    assert sign(x).is_imaginary is True
    assert sign(x).is_integer is False
    assert sign(x).is_real is False
    assert sign(x).is_zero is False
    assert sign(x).diff(x) == 2*DiracDelta(-I*x)
    assert sign(x).doit() == x / Abs(x)
    assert conjugate(sign(x)) == -sign(x)

    x = Symbol('x', real=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is None
    assert sign(x).diff(x) == 2*DiracDelta(x)
    assert sign(x).doit() == sign(x)
    assert conjugate(sign(x)) == sign(x)

    x = Symbol('x', nonzero=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = Symbol('x', positive=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = 0
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_real is True
    assert sign(x).is_zero is True
    assert sign(x).doit() == 0
    assert sign(Abs(x)) == 0
    assert Abs(sign(x)) == 0

    nz = Symbol('nz', nonzero=True, integer=True)
    assert sign(nz).is_imaginary is False
    assert sign(nz).is_integer is True
    assert sign(nz).is_real is True
    assert sign(nz).is_zero is False
    assert sign(nz)**2 == 1
    assert (sign(nz)**3).args == (sign(nz), 3)

    assert sign(Symbol('x', nonnegative=True)).is_nonnegative
    assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None
    assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None
    assert sign(Symbol('x', nonpositive=True)).is_nonpositive
    assert sign(Symbol('x', real=True)).is_nonnegative is None
    assert sign(Symbol('x', real=True)).is_nonpositive is None
    assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None

    x, y = Symbol('x', real=True), Symbol('y')
    f = Function('f')
    assert sign(x).rewrite(Piecewise) == \
        Piecewise((1, x > 0), (-1, x < 0), (0, True))
    assert sign(y).rewrite(Piecewise) == sign(y)
    assert sign(x).rewrite(Heaviside) == 2*Heaviside(x, H0=S(1)/2) - 1
    assert sign(y).rewrite(Heaviside) == sign(y)
    assert sign(y).rewrite(Abs) == Piecewise((0, Eq(y, 0)), (y/Abs(y), True))
    assert sign(f(y)).rewrite(Abs) == Piecewise((0, Eq(f(y), 0)), (f(y)/Abs(f(y)), True))

    # evaluate what can be evaluated
    assert sign(exp_polar(I*pi)*pi) is S.NegativeOne

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert sign(eq).func is sign or sign(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert sign(d).func is sign or sign(d) == 0


def test_as_real_imag():
    n = pi**1000
    # the special code for working out the real
    # and complex parts of a power with Integer exponent
    # should not run if there is no imaginary part, hence
    # this should not hang
    assert n.as_real_imag() == (n, 0)

    # issue 6261
    x = Symbol('x')
    assert sqrt(x).as_real_imag() == \
        ((re(x)**2 + im(x)**2)**Rational(1, 4)*cos(atan2(im(x), re(x))/2),
     (re(x)**2 + im(x)**2)**Rational(1, 4)*sin(atan2(im(x), re(x))/2))

    # issue 3853
    a, b = symbols('a,b', real=True)
    assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \
           (
               (a**2 + b**2)**Rational(
                   1, 4)*cos(atan2(b, a)/2)/2 + S.Half,
               (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2)

    assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0)
    i = symbols('i', imaginary=True)
    assert sqrt(i**2).as_real_imag() == (0, abs(i))

    assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
    assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0)


@XFAIL
def test_sign_issue_3068():
    n = pi**1000
    i = int(n)
    x = Symbol('x')
    assert (n - i).round() == 1  # doesn't hang
    assert sign(n - i) == 1
    # perhaps it's not possible to get the sign right when
    # only 1 digit is being requested for this situation;
    # 2 digits works
    assert (n - x).n(1, subs={x: i}) > 0
    assert (n - x).n(2, subs={x: i}) > 0


def test_Abs():
    raises(TypeError, lambda: Abs(Interval(2, 3)))  # issue 8717

    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x*y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1) == 1
    assert Abs(I) == 1
    assert Abs(-I) == 1
    assert Abs(nan) is nan
    assert Abs(zoo) is oo
    assert Abs(I * pi) == pi
    assert Abs(-I * pi) == pi
    assert Abs(I * x) == Abs(x)
    assert Abs(-I * x) == Abs(x)
    assert Abs(-2*x) == 2*Abs(x)
    assert Abs(-2.0*x) == 2.0*Abs(x)
    assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
    assert Abs(conjugate(x)) == Abs(x)
    assert conjugate(Abs(x)) == Abs(x)
    assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)

    a = Symbol('a', positive=True)
    assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
    assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)

    x = Symbol('x', real=True)
    n = Symbol('n', integer=True)
    assert Abs((-1)**n) == 1
    assert x**(2*n) == Abs(x)**(2*n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x)  # Python built-in
    assert Abs(x)**3 == x**2*Abs(x)
    assert Abs(x)**4 == x**4
    assert (
        Abs(x)**(3*n)).args == (Abs(x), 3*n)  # leave symbolic odd unchanged
    assert (1/Abs(x)).args == (Abs(x), -1)
    assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
    assert Abs(x)**-3 == Abs(x)/(x**4)
    assert Abs(x**3) == x**2*Abs(x)
    assert Abs(I**I) == exp(-pi/2)
    assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(Rational(5, 4)))
    y = Symbol('y', real=True)
    assert Abs(I**y) == 1
    y = Symbol('y')
    assert Abs(I**y) == exp(-pi*im(y)/2)

    x = Symbol('x', imaginary=True)
    assert Abs(x).diff(x) == -sign(x)

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when you can and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert abs(eq).func is Abs or abs(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert abs(d).func is Abs or abs(d) == 0

    assert Abs(4*exp(pi*I/4)) == 4
    assert Abs(3**(2 + I)) == 9
    assert Abs((-3)**(1 - I)) == 3*exp(pi)

    assert Abs(oo) is oo
    assert Abs(-oo) is oo
    assert Abs(oo + I) is oo
    assert Abs(oo + I*oo) is oo

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False
    assert Abs(x).fdiff() == sign(x)
    raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))

    # doesn't have recursion error
    arg = sqrt(acos(1 - I)*acos(1 + I))
    assert abs(arg) == arg

    # special handling to put Abs in denom
    assert abs(1/x) == 1/Abs(x)
    e = abs(2/x**2)
    assert e.is_Mul and e == 2/Abs(x**2)
    assert unchanged(Abs, y/x)
    assert unchanged(Abs, x/(x + 1))
    assert unchanged(Abs, x*y)
    p = Symbol('p', positive=True)
    assert abs(x/p) == abs(x)/p

    # coverage
    assert unchanged(Abs, Symbol('x', real=True)**y)
    # issue 19627
    f = Function('f', positive=True)
    assert sqrt(f(x)**2) == f(x)
    # issue 21625
    assert unchanged(Abs, S("im(acos(-i + acosh(-g + i)))"))


def test_Abs_rewrite():
    x = Symbol('x', real=True)
    a = Abs(x).rewrite(Heaviside).expand()
    assert a == x*Heaviside(x) - x*Heaviside(-x)
    for i in [-2, -1, 0, 1, 2]:
        assert a.subs(x, i) == abs(i)
    y = Symbol('y')
    assert Abs(y).rewrite(Heaviside) == Abs(y)

    x, y = Symbol('x', real=True), Symbol('y')
    assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
    assert Abs(y).rewrite(Piecewise) == Abs(y)
    assert Abs(y).rewrite(sign) == y/sign(y)

    i = Symbol('i', imaginary=True)
    assert abs(i).rewrite(Piecewise) == Piecewise((I*i, I*i >= 0), (-I*i, True))


    assert Abs(y).rewrite(conjugate) == sqrt(y*conjugate(y))
    assert Abs(i).rewrite(conjugate) == sqrt(-i**2) #  == -I*i

    y = Symbol('y', extended_real=True)
    assert  (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \
        -exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y)


def test_Abs_real():
    # test some properties of abs that only apply
    # to real numbers
    x = Symbol('x', complex=True)
    assert sqrt(x**2) != Abs(x)
    assert Abs(x**2) != x**2

    x = Symbol('x', real=True)
    assert sqrt(x**2) == Abs(x)
    assert Abs(x**2) == x**2

    # if the symbol is zero, the following will still apply
    nn = Symbol('nn', nonnegative=True, real=True)
    np = Symbol('np', nonpositive=True, real=True)
    assert Abs(nn) == nn
    assert Abs(np) == -np


def test_Abs_properties():
    x = Symbol('x')
    assert Abs(x).is_real is None
    assert Abs(x).is_extended_real is True
    assert Abs(x).is_rational is None
    assert Abs(x).is_positive is None
    assert Abs(x).is_nonnegative is None
    assert Abs(x).is_extended_positive is None
    assert Abs(x).is_extended_nonnegative is True

    f = Symbol('x', finite=True)
    assert Abs(f).is_real is True
    assert Abs(f).is_extended_real is True
    assert Abs(f).is_rational is None
    assert Abs(f).is_positive is None
    assert Abs(f).is_nonnegative is True
    assert Abs(f).is_extended_positive is None
    assert Abs(f).is_extended_nonnegative is True

    z = Symbol('z', complex=True, zero=False)
    assert Abs(z).is_real is True # since complex implies finite
    assert Abs(z).is_extended_real is True
    assert Abs(z).is_rational is None
    assert Abs(z).is_positive is True
    assert Abs(z).is_extended_positive is True
    assert Abs(z).is_zero is False

    p = Symbol('p', positive=True)
    assert Abs(p).is_real is True
    assert Abs(p).is_extended_real is True
    assert Abs(p).is_rational is None
    assert Abs(p).is_positive is True
    assert Abs(p).is_zero is False

    q = Symbol('q', rational=True)
    assert Abs(q).is_real is True
    assert Abs(q).is_rational is True
    assert Abs(q).is_integer is None
    assert Abs(q).is_positive is None
    assert Abs(q).is_nonnegative is True

    i = Symbol('i', integer=True)
    assert Abs(i).is_real is True
    assert Abs(i).is_integer is True
    assert Abs(i).is_positive is None
    assert Abs(i).is_nonnegative is True

    e = Symbol('n', even=True)
    ne = Symbol('ne', real=True, even=False)
    assert Abs(e).is_even is True
    assert Abs(ne).is_even is False
    assert Abs(i).is_even is None

    o = Symbol('n', odd=True)
    no = Symbol('no', real=True, odd=False)
    assert Abs(o).is_odd is True
    assert Abs(no).is_odd is False
    assert Abs(i).is_odd is None


def test_abs():
    # this tests that abs calls Abs; don't rename to
    # test_Abs since that test is already above
    a = Symbol('a', positive=True)
    assert abs(I*(1 + a)**2) == (1 + a)**2


def test_arg():
    assert arg(0) is nan
    assert arg(1) == 0
    assert arg(-1) == pi
    assert arg(I) == pi/2
    assert arg(-I) == -pi/2
    assert arg(1 + I) == pi/4
    assert arg(-1 + I) == pi*Rational(3, 4)
    assert arg(1 - I) == -pi/4
    assert arg(exp_polar(4*pi*I)) == 4*pi
    assert arg(exp_polar(-7*pi*I)) == -7*pi
    assert arg(exp_polar(5 - 3*pi*I/4)) == pi*Rational(-3, 4)

    assert arg(exp(I*pi/7)) == pi/7     # issue 17300
    assert arg(exp(16*I)) == 16 - 6*pi
    assert arg(exp(13*I*pi/12)) == -11*pi/12
    assert arg(exp(123 - 5*I)) == -5 + 2*pi
    assert arg(exp(sin(1 + 3*I))) == -2*pi + cos(1)*sinh(3)
    r = Symbol('r', real=True)
    assert arg(exp(r - 2*I)) == -2

    f = Function('f')
    assert not arg(f(0) + I*f(1)).atoms(re)

    # check nesting
    x = Symbol('x')
    assert arg(arg(arg(x))) is not S.NaN
    assert arg(arg(arg(arg(x)))) is S.NaN
    r = Symbol('r', extended_real=True)
    assert arg(arg(r)) is not S.NaN
    assert arg(arg(arg(r))) is S.NaN

    p = Function('p', extended_positive=True)
    assert arg(p(x)) == 0
    assert arg((3 + I)*p(x)) == arg(3  + I)

    p = Symbol('p', positive=True)
    assert arg(p) == 0
    assert arg(p*I) == pi/2

    n = Symbol('n', negative=True)
    assert arg(n) == pi
    assert arg(n*I) == -pi/2

    x = Symbol('x')
    assert conjugate(arg(x)) == arg(x)

    e = p + I*p**2
    assert arg(e) == arg(1 + p*I)
    # make sure sign doesn't swap
    e = -2*p + 4*I*p**2
    assert arg(e) == arg(-1 + 2*p*I)
    # make sure sign isn't lost
    x = symbols('x', real=True)  # could be zero
    e = x + I*x
    assert arg(e) == arg(x*(1 + I))
    assert arg(e/p) == arg(x*(1 + I))
    e = p*cos(p) + I*log(p)*exp(p)
    assert arg(e).args[0] == e
    # keep it simple -- let the user do more advanced cancellation
    e = (p + 1) + I*(p**2 - 1)
    assert arg(e).args[0] == e

    f = Function('f')
    e = 2*x*(f(0) - 1) - 2*x*f(0)
    assert arg(e) == arg(-2*x)
    assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),)


def test_arg_rewrite():
    assert arg(1 + I) == atan2(1, 1)

    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert arg(x + I*y).rewrite(atan2) == atan2(y, x)


def test_adjoint():
    a = Symbol('a', antihermitian=True)
    b = Symbol('b', hermitian=True)
    assert adjoint(a) == -a
    assert adjoint(I*a) == I*a
    assert adjoint(b) == b
    assert adjoint(I*b) == -I*b
    assert adjoint(a*b) == -b*a
    assert adjoint(I*a*b) == I*b*a

    x, y = symbols('x y')
    assert adjoint(adjoint(x)) == x
    assert adjoint(x + y) == adjoint(x) + adjoint(y)
    assert adjoint(x - y) == adjoint(x) - adjoint(y)
    assert adjoint(x * y) == adjoint(x) * adjoint(y)
    assert adjoint(x / y) == adjoint(x) / adjoint(y)
    assert adjoint(-x) == -adjoint(x)

    x, y = symbols('x y', commutative=False)
    assert adjoint(adjoint(x)) == x
    assert adjoint(x + y) == adjoint(x) + adjoint(y)
    assert adjoint(x - y) == adjoint(x) - adjoint(y)
    assert adjoint(x * y) == adjoint(y) * adjoint(x)
    assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x)
    assert adjoint(-x) == -adjoint(x)


def test_conjugate():
    a = Symbol('a', real=True)
    b = Symbol('b', imaginary=True)
    assert conjugate(a) == a
    assert conjugate(I*a) == -I*a
    assert conjugate(b) == -b
    assert conjugate(I*b) == I*b
    assert conjugate(a*b) == -a*b
    assert conjugate(I*a*b) == I*a*b

    x, y = symbols('x y')
    assert conjugate(conjugate(x)) == x
    assert conjugate(x).inverse() == conjugate
    assert conjugate(x + y) == conjugate(x) + conjugate(y)
    assert conjugate(x - y) == conjugate(x) - conjugate(y)
    assert conjugate(x * y) == conjugate(x) * conjugate(y)
    assert conjugate(x / y) == conjugate(x) / conjugate(y)
    assert conjugate(-x) == -conjugate(x)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False


def test_conjugate_transpose():
    x = Symbol('x')
    assert conjugate(transpose(x)) == adjoint(x)
    assert transpose(conjugate(x)) == adjoint(x)
    assert adjoint(transpose(x)) == conjugate(x)
    assert transpose(adjoint(x)) == conjugate(x)
    assert adjoint(conjugate(x)) == transpose(x)
    assert conjugate(adjoint(x)) == transpose(x)

    class Symmetric(Expr):
        def _eval_adjoint(self):
            return None

        def _eval_conjugate(self):
            return None

        def _eval_transpose(self):
            return self
    x = Symmetric()
    assert conjugate(x) == adjoint(x)
    assert transpose(x) == x


def test_transpose():
    a = Symbol('a', complex=True)
    assert transpose(a) == a
    assert transpose(I*a) == I*a

    x, y = symbols('x y')
    assert transpose(transpose(x)) == x
    assert transpose(x + y) == transpose(x) + transpose(y)
    assert transpose(x - y) == transpose(x) - transpose(y)
    assert transpose(x * y) == transpose(x) * transpose(y)
    assert transpose(x / y) == transpose(x) / transpose(y)
    assert transpose(-x) == -transpose(x)

    x, y = symbols('x y', commutative=False)
    assert transpose(transpose(x)) == x
    assert transpose(x + y) == transpose(x) + transpose(y)
    assert transpose(x - y) == transpose(x) - transpose(y)
    assert transpose(x * y) == transpose(y) * transpose(x)
    assert transpose(x / y) == 1 / transpose(y) * transpose(x)
    assert transpose(-x) == -transpose(x)


@_both_exp_pow
def test_polarify():
    from sympy.functions.elementary.complexes import (polar_lift, polarify)
    x = Symbol('x')
    z = Symbol('z', polar=True)
    f = Function('f')
    ES = {}

    assert polarify(-1) == (polar_lift(-1), ES)
    assert polarify(1 + I) == (polar_lift(1 + I), ES)

    assert polarify(exp(x), subs=False) == exp(x)
    assert polarify(1 + x, subs=False) == 1 + x
    assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x

    assert polarify(x, lift=True) == polar_lift(x)
    assert polarify(z, lift=True) == z
    assert polarify(f(x), lift=True) == f(polar_lift(x))
    assert polarify(1 + x, lift=True) == polar_lift(1 + x)
    assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))

    newex, subs = polarify(f(x) + z)
    assert newex.subs(subs) == f(x) + z

    mu = Symbol("mu")
    sigma = Symbol("sigma", positive=True)

    # Make sure polarify(lift=True) doesn't try to lift the integration
    # variable
    assert polarify(
        Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
        (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)*
        exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)**
        (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))


def test_unpolarify():
    from sympy.functions.elementary.complexes import (polar_lift, principal_branch, unpolarify)
    from sympy.core.relational import Ne
    from sympy.functions.elementary.hyperbolic import tanh
    from sympy.functions.special.error_functions import erf
    from sympy.functions.special.gamma_functions import (gamma, uppergamma)
    from sympy.abc import x
    p = exp_polar(7*I) + 1
    u = exp(7*I) + 1

    assert unpolarify(1) == 1
    assert unpolarify(p) == u
    assert unpolarify(p**2) == u**2
    assert unpolarify(p**x) == p**x
    assert unpolarify(p*x) == u*x
    assert unpolarify(p + x) == u + x
    assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))

    # Test reduction to principal branch 2*pi.
    t = principal_branch(x, 2*pi)
    assert unpolarify(t) == x
    assert unpolarify(sqrt(t)) == sqrt(t)

    # Test exponents_only.
    assert unpolarify(p**p, exponents_only=True) == p**u
    assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)

    # Test functions.
    assert unpolarify(sin(p)) == sin(u)
    assert unpolarify(tanh(p)) == tanh(u)
    assert unpolarify(gamma(p)) == gamma(u)
    assert unpolarify(erf(p)) == erf(u)
    assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)

    assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
        uppergamma(sin(u), sin(u + 1))
    assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
        uppergamma(0, 2)

    assert unpolarify(Eq(p, 0)) == Eq(u, 0)
    assert unpolarify(Ne(p, 0)) == Ne(u, 0)
    assert unpolarify(polar_lift(x) > 0) == (x > 0)

    # Test bools
    assert unpolarify(True) is True


def test_issue_4035():
    x = Symbol('x')
    assert Abs(x).expand(trig=True) == Abs(x)
    assert sign(x).expand(trig=True) == sign(x)
    assert arg(x).expand(trig=True) == arg(x)


def test_issue_3206():
    x = Symbol('x')
    assert Abs(Abs(x)) == Abs(x)


def test_issue_4754_derivative_conjugate():
    x = Symbol('x', real=True)
    y = Symbol('y', imaginary=True)
    f = Function('f')
    assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate()
    assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate()


def test_derivatives_issue_4757():
    x = Symbol('x', real=True)
    y = Symbol('y', imaginary=True)
    f = Function('f')
    assert re(f(x)).diff(x) == re(f(x).diff(x))
    assert im(f(x)).diff(x) == im(f(x).diff(x))
    assert re(f(y)).diff(y) == -I*im(f(y).diff(y))
    assert im(f(y)).diff(y) == -I*re(f(y).diff(y))
    assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2)
    assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4)
    assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2)
    assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4)


def test_issue_11413():
    from sympy.simplify.simplify import simplify
    v0 = Symbol('v0')
    v1 = Symbol('v1')
    v2 = Symbol('v2')
    V = Matrix([[v0],[v1],[v2]])
    U = V.normalized()
    assert U == Matrix([
    [v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
    [v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
    [v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]])
    U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2))
    assert simplify(U.norm) == 1


def test_periodic_argument():
    from sympy.functions.elementary.complexes import (periodic_argument, polar_lift, principal_branch, unbranched_argument)
    x = Symbol('x')
    p = Symbol('p', positive=True)

    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)

    assert unbranched_argument(principal_branch(x, pi)) == \
        periodic_argument(x, pi)

    assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
    assert periodic_argument(polar_lift(2 + I), 2*pi) == \
        periodic_argument(2 + I, 2*pi)
    assert periodic_argument(polar_lift(2 + I), 3*pi) == \
        periodic_argument(2 + I, 3*pi)
    assert periodic_argument(polar_lift(2 + I), pi) == \
        periodic_argument(polar_lift(2 + I), pi)

    assert unbranched_argument(polar_lift(1 + I)) == pi/4
    assert periodic_argument(2*p, p) == periodic_argument(p, p)
    assert periodic_argument(pi*p, p) == periodic_argument(p, p)

    assert Abs(polar_lift(1 + I)) == Abs(1 + I)


@XFAIL
def test_principal_branch_fail():
    # TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf?
    from sympy.functions.elementary.complexes import principal_branch
    assert N_equals(principal_branch((1 + I)**2, pi/2), 0)


def test_principal_branch():
    from sympy.functions.elementary.complexes import (polar_lift, principal_branch)
    p = Symbol('p', positive=True)
    x = Symbol('x')
    neg = Symbol('x', negative=True)

    assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
    assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
    assert principal_branch(2*x, p) == 2*principal_branch(x, p)
    assert principal_branch(1, pi) == exp_polar(0)
    assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
    assert principal_branch(-1, pi) == exp_polar(0)
    assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
        principal_branch(exp_polar(I*pi)*x, 2*pi)
    assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)
    # related to issue #14692
    assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \
        exp_polar(-I*pi/2)/neg

    assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)

    # test argument sanitization
    assert principal_branch(x, I).func is principal_branch
    assert principal_branch(x, -4).func is principal_branch
    assert principal_branch(x, -oo).func is principal_branch
    assert principal_branch(x, zoo).func is principal_branch


@XFAIL
def test_issue_6167_6151():
    n = pi**1000
    i = int(n)
    assert sign(n - i) == 1
    assert abs(n - i) == n - i
    x = Symbol('x')
    eps = pi**-1500
    big = pi**1000
    one = cos(x)**2 + sin(x)**2
    e = big*one - big + eps
    from sympy.simplify.simplify import simplify
    assert sign(simplify(e)) == 1
    for xi in (111, 11, 1, Rational(1, 10)):
        assert sign(e.subs(x, xi)) == 1


def test_issue_14216():
    from sympy.functions.elementary.complexes import unpolarify
    A = MatrixSymbol("A", 2, 2)
    assert unpolarify(A[0, 0]) == A[0, 0]
    assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0]


def test_issue_14238():
    # doesn't cause recursion error
    r = Symbol('r', real=True)
    assert Abs(r + Piecewise((0, r > 0), (1 - r, True)))


def test_issue_22189():
    x = Symbol('x')
    for a in (sqrt(7 - 2*x) - 2, 1 - x):
        assert Abs(a) - Abs(-a) == 0, a


def test_zero_assumptions():
    nr = Symbol('nonreal', real=False, finite=True)
    ni = Symbol('nonimaginary', imaginary=False)
    # imaginary implies not zero
    nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False)

    assert re(nr).is_zero is None
    assert im(nr).is_zero is False

    assert re(ni).is_zero is None
    assert im(ni).is_zero is None

    assert re(nzni).is_zero is False
    assert im(nzni).is_zero is None


@_both_exp_pow
def test_issue_15893():
    f = Function('f', real=True)
    x = Symbol('x', real=True)
    eq = Derivative(Abs(f(x)), f(x))
    assert eq.doit() == sign(f(x))