Spaces:
Running
Running
File size: 33,878 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function, Lambda, expand)
from sympy.core.numbers import (E, I, Rational, comp, nan, oo, pi, zoo)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, sign, transpose)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, atan, atan2, cos, sin)
from sympy.functions.elementary.hyperbolic import sinh
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
from sympy.integrals.integrals import Integral
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.immutable import (ImmutableMatrix, ImmutableSparseMatrix)
from sympy.matrices import SparseMatrix
from sympy.sets.sets import Interval
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow
def N_equals(a, b):
"""Check whether two complex numbers are numerically close"""
return comp(a.n(), b.n(), 1.e-6)
def test_re():
x, y = symbols('x,y')
a, b = symbols('a,b', real=True)
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert re(nan) is nan
assert re(oo) is oo
assert re(-oo) is -oo
assert re(0) == 0
assert re(1) == 1
assert re(-1) == -1
assert re(E) == E
assert re(-E) == -E
assert unchanged(re, x)
assert re(x*I) == -im(x)
assert re(r*I) == 0
assert re(r) == r
assert re(i*I) == I * i
assert re(i) == 0
assert re(x + y) == re(x) + re(y)
assert re(x + r) == re(x) + r
assert re(re(x)) == re(x)
assert re(2 + I) == 2
assert re(x + I) == re(x)
assert re(x + y*I) == re(x) - im(y)
assert re(x + r*I) == re(x)
assert re(log(2*I)) == log(2)
assert re((2 + I)**2).expand(complex=True) == 3
assert re(conjugate(x)) == re(x)
assert conjugate(re(x)) == re(x)
assert re(x).as_real_imag() == (re(x), 0)
assert re(i*r*x).diff(r) == re(i*x)
assert re(i*r*x).diff(i) == I*r*im(x)
assert re(
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
assert re(a * (2 + b*I)) == 2*a
assert re((1 + sqrt(a + b*I))/2) == \
(a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half
assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert re(S.ComplexInfinity) is S.NaN
n, m, l = symbols('n m l')
A = MatrixSymbol('A',n,m)
assert re(A) == (S.Half) * (A + conjugate(A))
A = Matrix([[1 + 4*I,2],[0, -3*I]])
assert re(A) == Matrix([[1, 2],[0, 0]])
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])
X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
assert re(X) - Matrix([[0, 0, 0, 0, 0],
[2, 2, 2, 2, 2],
[4, 4, 4, 4, 4],
[6, 6, 6, 6, 6],
[8, 8, 8, 8, 8]]) == Matrix.zeros(5)
assert im(X) - Matrix([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]) == Matrix.zeros(5)
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
def test_im():
x, y = symbols('x,y')
a, b = symbols('a,b', real=True)
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
assert im(nan) is nan
assert im(oo*I) is oo
assert im(-oo*I) is -oo
assert im(0) == 0
assert im(1) == 0
assert im(-1) == 0
assert im(E*I) == E
assert im(-E*I) == -E
assert unchanged(im, x)
assert im(x*I) == re(x)
assert im(r*I) == r
assert im(r) == 0
assert im(i*I) == 0
assert im(i) == -I * i
assert im(x + y) == im(x) + im(y)
assert im(x + r) == im(x)
assert im(x + r*I) == im(x) + r
assert im(im(x)*I) == im(x)
assert im(2 + I) == 1
assert im(x + I) == im(x) + 1
assert im(x + y*I) == im(x) + re(y)
assert im(x + r*I) == im(x) + r
assert im(log(2*I)) == pi/2
assert im((2 + I)**2).expand(complex=True) == 4
assert im(conjugate(x)) == -im(x)
assert conjugate(im(x)) == im(x)
assert im(x).as_real_imag() == (im(x), 0)
assert im(i*r*x).diff(r) == im(i*x)
assert im(i*r*x).diff(i) == -I * re(r*x)
assert im(
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
assert im(a * (2 + b*I)) == a*b
assert im((1 + sqrt(a + b*I))/2) == \
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2
assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert im(S.ComplexInfinity) is S.NaN
n, m, l = symbols('n m l')
A = MatrixSymbol('A',n,m)
assert im(A) == (S.One/(2*I)) * (A - conjugate(A))
A = Matrix([[1 + 4*I, 2],[0, -3*I]])
assert im(A) == Matrix([[4, 0],[0, -3]])
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])
X = ImmutableSparseMatrix(
[[i*I + i for i in range(5)] for i in range(5)])
Y = SparseMatrix([list(range(5)) for i in range(5)])
assert im(X).as_immutable() == Y
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
def test_sign():
assert sign(1.2) == 1
assert sign(-1.2) == -1
assert sign(3*I) == I
assert sign(-3*I) == -I
assert sign(0) == 0
assert sign(0, evaluate=False).doit() == 0
assert sign(oo, evaluate=False).doit() == 1
assert sign(nan) is nan
assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
assert sign(2 + 2*I).simplify() == sign(1 + I)
assert sign(im(sqrt(1 - sqrt(3)))) == 1
assert sign(sqrt(1 - sqrt(3))) == I
x = Symbol('x')
assert sign(x).is_finite is True
assert sign(x).is_complex is True
assert sign(x).is_imaginary is None
assert sign(x).is_integer is None
assert sign(x).is_real is None
assert sign(x).is_zero is None
assert sign(x).doit() == sign(x)
assert sign(1.2*x) == sign(x)
assert sign(2*x) == sign(x)
assert sign(I*x) == I*sign(x)
assert sign(-2*I*x) == -I*sign(x)
assert sign(conjugate(x)) == conjugate(sign(x))
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
m = Symbol('m', negative=True)
assert sign(2*p*x) == sign(x)
assert sign(n*x) == -sign(x)
assert sign(n*m*x) == sign(x)
x = Symbol('x', imaginary=True)
assert sign(x).is_imaginary is True
assert sign(x).is_integer is False
assert sign(x).is_real is False
assert sign(x).is_zero is False
assert sign(x).diff(x) == 2*DiracDelta(-I*x)
assert sign(x).doit() == x / Abs(x)
assert conjugate(sign(x)) == -sign(x)
x = Symbol('x', real=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is None
assert sign(x).diff(x) == 2*DiracDelta(x)
assert sign(x).doit() == sign(x)
assert conjugate(sign(x)) == sign(x)
x = Symbol('x', nonzero=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is False
assert sign(x).doit() == x / Abs(x)
assert sign(Abs(x)) == 1
assert Abs(sign(x)) == 1
x = Symbol('x', positive=True)
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is False
assert sign(x).doit() == x / Abs(x)
assert sign(Abs(x)) == 1
assert Abs(sign(x)) == 1
x = 0
assert sign(x).is_imaginary is False
assert sign(x).is_integer is True
assert sign(x).is_real is True
assert sign(x).is_zero is True
assert sign(x).doit() == 0
assert sign(Abs(x)) == 0
assert Abs(sign(x)) == 0
nz = Symbol('nz', nonzero=True, integer=True)
assert sign(nz).is_imaginary is False
assert sign(nz).is_integer is True
assert sign(nz).is_real is True
assert sign(nz).is_zero is False
assert sign(nz)**2 == 1
assert (sign(nz)**3).args == (sign(nz), 3)
assert sign(Symbol('x', nonnegative=True)).is_nonnegative
assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None
assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None
assert sign(Symbol('x', nonpositive=True)).is_nonpositive
assert sign(Symbol('x', real=True)).is_nonnegative is None
assert sign(Symbol('x', real=True)).is_nonpositive is None
assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None
x, y = Symbol('x', real=True), Symbol('y')
f = Function('f')
assert sign(x).rewrite(Piecewise) == \
Piecewise((1, x > 0), (-1, x < 0), (0, True))
assert sign(y).rewrite(Piecewise) == sign(y)
assert sign(x).rewrite(Heaviside) == 2*Heaviside(x, H0=S(1)/2) - 1
assert sign(y).rewrite(Heaviside) == sign(y)
assert sign(y).rewrite(Abs) == Piecewise((0, Eq(y, 0)), (y/Abs(y), True))
assert sign(f(y)).rewrite(Abs) == Piecewise((0, Eq(f(y), 0)), (f(y)/Abs(f(y)), True))
# evaluate what can be evaluated
assert sign(exp_polar(I*pi)*pi) is S.NegativeOne
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
# if there is a fast way to know when and when you cannot prove an
# expression like this is zero then the equality to zero is ok
assert sign(eq).func is sign or sign(eq) == 0
# but sometimes it's hard to do this so it's better not to load
# abs down with tests that will be very slow
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
p = expand(q**3)**Rational(1, 3)
d = p - q
assert sign(d).func is sign or sign(d) == 0
def test_as_real_imag():
n = pi**1000
# the special code for working out the real
# and complex parts of a power with Integer exponent
# should not run if there is no imaginary part, hence
# this should not hang
assert n.as_real_imag() == (n, 0)
# issue 6261
x = Symbol('x')
assert sqrt(x).as_real_imag() == \
((re(x)**2 + im(x)**2)**Rational(1, 4)*cos(atan2(im(x), re(x))/2),
(re(x)**2 + im(x)**2)**Rational(1, 4)*sin(atan2(im(x), re(x))/2))
# issue 3853
a, b = symbols('a,b', real=True)
assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \
(
(a**2 + b**2)**Rational(
1, 4)*cos(atan2(b, a)/2)/2 + S.Half,
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2)
assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0)
i = symbols('i', imaginary=True)
assert sqrt(i**2).as_real_imag() == (0, abs(i))
assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0)
@XFAIL
def test_sign_issue_3068():
n = pi**1000
i = int(n)
x = Symbol('x')
assert (n - i).round() == 1 # doesn't hang
assert sign(n - i) == 1
# perhaps it's not possible to get the sign right when
# only 1 digit is being requested for this situation;
# 2 digits works
assert (n - x).n(1, subs={x: i}) > 0
assert (n - x).n(2, subs={x: i}) > 0
def test_Abs():
raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717
x, y = symbols('x,y')
assert sign(sign(x)) == sign(x)
assert sign(x*y).func is sign
assert Abs(0) == 0
assert Abs(1) == 1
assert Abs(-1) == 1
assert Abs(I) == 1
assert Abs(-I) == 1
assert Abs(nan) is nan
assert Abs(zoo) is oo
assert Abs(I * pi) == pi
assert Abs(-I * pi) == pi
assert Abs(I * x) == Abs(x)
assert Abs(-I * x) == Abs(x)
assert Abs(-2*x) == 2*Abs(x)
assert Abs(-2.0*x) == 2.0*Abs(x)
assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
assert Abs(conjugate(x)) == Abs(x)
assert conjugate(Abs(x)) == Abs(x)
assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)
a = Symbol('a', positive=True)
assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)
x = Symbol('x', real=True)
n = Symbol('n', integer=True)
assert Abs((-1)**n) == 1
assert x**(2*n) == Abs(x)**(2*n)
assert Abs(x).diff(x) == sign(x)
assert abs(x) == Abs(x) # Python built-in
assert Abs(x)**3 == x**2*Abs(x)
assert Abs(x)**4 == x**4
assert (
Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged
assert (1/Abs(x)).args == (Abs(x), -1)
assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
assert Abs(x)**-3 == Abs(x)/(x**4)
assert Abs(x**3) == x**2*Abs(x)
assert Abs(I**I) == exp(-pi/2)
assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(Rational(5, 4)))
y = Symbol('y', real=True)
assert Abs(I**y) == 1
y = Symbol('y')
assert Abs(I**y) == exp(-pi*im(y)/2)
x = Symbol('x', imaginary=True)
assert Abs(x).diff(x) == -sign(x)
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
# if there is a fast way to know when you can and when you cannot prove an
# expression like this is zero then the equality to zero is ok
assert abs(eq).func is Abs or abs(eq) == 0
# but sometimes it's hard to do this so it's better not to load
# abs down with tests that will be very slow
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
p = expand(q**3)**Rational(1, 3)
d = p - q
assert abs(d).func is Abs or abs(d) == 0
assert Abs(4*exp(pi*I/4)) == 4
assert Abs(3**(2 + I)) == 9
assert Abs((-3)**(1 - I)) == 3*exp(pi)
assert Abs(oo) is oo
assert Abs(-oo) is oo
assert Abs(oo + I) is oo
assert Abs(oo + I*oo) is oo
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
x = Symbol('x')
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
assert Abs(x).fdiff() == sign(x)
raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))
# doesn't have recursion error
arg = sqrt(acos(1 - I)*acos(1 + I))
assert abs(arg) == arg
# special handling to put Abs in denom
assert abs(1/x) == 1/Abs(x)
e = abs(2/x**2)
assert e.is_Mul and e == 2/Abs(x**2)
assert unchanged(Abs, y/x)
assert unchanged(Abs, x/(x + 1))
assert unchanged(Abs, x*y)
p = Symbol('p', positive=True)
assert abs(x/p) == abs(x)/p
# coverage
assert unchanged(Abs, Symbol('x', real=True)**y)
# issue 19627
f = Function('f', positive=True)
assert sqrt(f(x)**2) == f(x)
# issue 21625
assert unchanged(Abs, S("im(acos(-i + acosh(-g + i)))"))
def test_Abs_rewrite():
x = Symbol('x', real=True)
a = Abs(x).rewrite(Heaviside).expand()
assert a == x*Heaviside(x) - x*Heaviside(-x)
for i in [-2, -1, 0, 1, 2]:
assert a.subs(x, i) == abs(i)
y = Symbol('y')
assert Abs(y).rewrite(Heaviside) == Abs(y)
x, y = Symbol('x', real=True), Symbol('y')
assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
assert Abs(y).rewrite(Piecewise) == Abs(y)
assert Abs(y).rewrite(sign) == y/sign(y)
i = Symbol('i', imaginary=True)
assert abs(i).rewrite(Piecewise) == Piecewise((I*i, I*i >= 0), (-I*i, True))
assert Abs(y).rewrite(conjugate) == sqrt(y*conjugate(y))
assert Abs(i).rewrite(conjugate) == sqrt(-i**2) # == -I*i
y = Symbol('y', extended_real=True)
assert (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \
-exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y)
def test_Abs_real():
# test some properties of abs that only apply
# to real numbers
x = Symbol('x', complex=True)
assert sqrt(x**2) != Abs(x)
assert Abs(x**2) != x**2
x = Symbol('x', real=True)
assert sqrt(x**2) == Abs(x)
assert Abs(x**2) == x**2
# if the symbol is zero, the following will still apply
nn = Symbol('nn', nonnegative=True, real=True)
np = Symbol('np', nonpositive=True, real=True)
assert Abs(nn) == nn
assert Abs(np) == -np
def test_Abs_properties():
x = Symbol('x')
assert Abs(x).is_real is None
assert Abs(x).is_extended_real is True
assert Abs(x).is_rational is None
assert Abs(x).is_positive is None
assert Abs(x).is_nonnegative is None
assert Abs(x).is_extended_positive is None
assert Abs(x).is_extended_nonnegative is True
f = Symbol('x', finite=True)
assert Abs(f).is_real is True
assert Abs(f).is_extended_real is True
assert Abs(f).is_rational is None
assert Abs(f).is_positive is None
assert Abs(f).is_nonnegative is True
assert Abs(f).is_extended_positive is None
assert Abs(f).is_extended_nonnegative is True
z = Symbol('z', complex=True, zero=False)
assert Abs(z).is_real is True # since complex implies finite
assert Abs(z).is_extended_real is True
assert Abs(z).is_rational is None
assert Abs(z).is_positive is True
assert Abs(z).is_extended_positive is True
assert Abs(z).is_zero is False
p = Symbol('p', positive=True)
assert Abs(p).is_real is True
assert Abs(p).is_extended_real is True
assert Abs(p).is_rational is None
assert Abs(p).is_positive is True
assert Abs(p).is_zero is False
q = Symbol('q', rational=True)
assert Abs(q).is_real is True
assert Abs(q).is_rational is True
assert Abs(q).is_integer is None
assert Abs(q).is_positive is None
assert Abs(q).is_nonnegative is True
i = Symbol('i', integer=True)
assert Abs(i).is_real is True
assert Abs(i).is_integer is True
assert Abs(i).is_positive is None
assert Abs(i).is_nonnegative is True
e = Symbol('n', even=True)
ne = Symbol('ne', real=True, even=False)
assert Abs(e).is_even is True
assert Abs(ne).is_even is False
assert Abs(i).is_even is None
o = Symbol('n', odd=True)
no = Symbol('no', real=True, odd=False)
assert Abs(o).is_odd is True
assert Abs(no).is_odd is False
assert Abs(i).is_odd is None
def test_abs():
# this tests that abs calls Abs; don't rename to
# test_Abs since that test is already above
a = Symbol('a', positive=True)
assert abs(I*(1 + a)**2) == (1 + a)**2
def test_arg():
assert arg(0) is nan
assert arg(1) == 0
assert arg(-1) == pi
assert arg(I) == pi/2
assert arg(-I) == -pi/2
assert arg(1 + I) == pi/4
assert arg(-1 + I) == pi*Rational(3, 4)
assert arg(1 - I) == -pi/4
assert arg(exp_polar(4*pi*I)) == 4*pi
assert arg(exp_polar(-7*pi*I)) == -7*pi
assert arg(exp_polar(5 - 3*pi*I/4)) == pi*Rational(-3, 4)
assert arg(exp(I*pi/7)) == pi/7 # issue 17300
assert arg(exp(16*I)) == 16 - 6*pi
assert arg(exp(13*I*pi/12)) == -11*pi/12
assert arg(exp(123 - 5*I)) == -5 + 2*pi
assert arg(exp(sin(1 + 3*I))) == -2*pi + cos(1)*sinh(3)
r = Symbol('r', real=True)
assert arg(exp(r - 2*I)) == -2
f = Function('f')
assert not arg(f(0) + I*f(1)).atoms(re)
# check nesting
x = Symbol('x')
assert arg(arg(arg(x))) is not S.NaN
assert arg(arg(arg(arg(x)))) is S.NaN
r = Symbol('r', extended_real=True)
assert arg(arg(r)) is not S.NaN
assert arg(arg(arg(r))) is S.NaN
p = Function('p', extended_positive=True)
assert arg(p(x)) == 0
assert arg((3 + I)*p(x)) == arg(3 + I)
p = Symbol('p', positive=True)
assert arg(p) == 0
assert arg(p*I) == pi/2
n = Symbol('n', negative=True)
assert arg(n) == pi
assert arg(n*I) == -pi/2
x = Symbol('x')
assert conjugate(arg(x)) == arg(x)
e = p + I*p**2
assert arg(e) == arg(1 + p*I)
# make sure sign doesn't swap
e = -2*p + 4*I*p**2
assert arg(e) == arg(-1 + 2*p*I)
# make sure sign isn't lost
x = symbols('x', real=True) # could be zero
e = x + I*x
assert arg(e) == arg(x*(1 + I))
assert arg(e/p) == arg(x*(1 + I))
e = p*cos(p) + I*log(p)*exp(p)
assert arg(e).args[0] == e
# keep it simple -- let the user do more advanced cancellation
e = (p + 1) + I*(p**2 - 1)
assert arg(e).args[0] == e
f = Function('f')
e = 2*x*(f(0) - 1) - 2*x*f(0)
assert arg(e) == arg(-2*x)
assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),)
def test_arg_rewrite():
assert arg(1 + I) == atan2(1, 1)
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert arg(x + I*y).rewrite(atan2) == atan2(y, x)
def test_adjoint():
a = Symbol('a', antihermitian=True)
b = Symbol('b', hermitian=True)
assert adjoint(a) == -a
assert adjoint(I*a) == I*a
assert adjoint(b) == b
assert adjoint(I*b) == -I*b
assert adjoint(a*b) == -b*a
assert adjoint(I*a*b) == I*b*a
x, y = symbols('x y')
assert adjoint(adjoint(x)) == x
assert adjoint(x + y) == adjoint(x) + adjoint(y)
assert adjoint(x - y) == adjoint(x) - adjoint(y)
assert adjoint(x * y) == adjoint(x) * adjoint(y)
assert adjoint(x / y) == adjoint(x) / adjoint(y)
assert adjoint(-x) == -adjoint(x)
x, y = symbols('x y', commutative=False)
assert adjoint(adjoint(x)) == x
assert adjoint(x + y) == adjoint(x) + adjoint(y)
assert adjoint(x - y) == adjoint(x) - adjoint(y)
assert adjoint(x * y) == adjoint(y) * adjoint(x)
assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x)
assert adjoint(-x) == -adjoint(x)
def test_conjugate():
a = Symbol('a', real=True)
b = Symbol('b', imaginary=True)
assert conjugate(a) == a
assert conjugate(I*a) == -I*a
assert conjugate(b) == -b
assert conjugate(I*b) == I*b
assert conjugate(a*b) == -a*b
assert conjugate(I*a*b) == I*a*b
x, y = symbols('x y')
assert conjugate(conjugate(x)) == x
assert conjugate(x).inverse() == conjugate
assert conjugate(x + y) == conjugate(x) + conjugate(y)
assert conjugate(x - y) == conjugate(x) - conjugate(y)
assert conjugate(x * y) == conjugate(x) * conjugate(y)
assert conjugate(x / y) == conjugate(x) / conjugate(y)
assert conjugate(-x) == -conjugate(x)
a = Symbol('a', algebraic=True)
t = Symbol('t', transcendental=True)
assert re(a).is_algebraic
assert re(x).is_algebraic is None
assert re(t).is_algebraic is False
def test_conjugate_transpose():
x = Symbol('x')
assert conjugate(transpose(x)) == adjoint(x)
assert transpose(conjugate(x)) == adjoint(x)
assert adjoint(transpose(x)) == conjugate(x)
assert transpose(adjoint(x)) == conjugate(x)
assert adjoint(conjugate(x)) == transpose(x)
assert conjugate(adjoint(x)) == transpose(x)
class Symmetric(Expr):
def _eval_adjoint(self):
return None
def _eval_conjugate(self):
return None
def _eval_transpose(self):
return self
x = Symmetric()
assert conjugate(x) == adjoint(x)
assert transpose(x) == x
def test_transpose():
a = Symbol('a', complex=True)
assert transpose(a) == a
assert transpose(I*a) == I*a
x, y = symbols('x y')
assert transpose(transpose(x)) == x
assert transpose(x + y) == transpose(x) + transpose(y)
assert transpose(x - y) == transpose(x) - transpose(y)
assert transpose(x * y) == transpose(x) * transpose(y)
assert transpose(x / y) == transpose(x) / transpose(y)
assert transpose(-x) == -transpose(x)
x, y = symbols('x y', commutative=False)
assert transpose(transpose(x)) == x
assert transpose(x + y) == transpose(x) + transpose(y)
assert transpose(x - y) == transpose(x) - transpose(y)
assert transpose(x * y) == transpose(y) * transpose(x)
assert transpose(x / y) == 1 / transpose(y) * transpose(x)
assert transpose(-x) == -transpose(x)
@_both_exp_pow
def test_polarify():
from sympy.functions.elementary.complexes import (polar_lift, polarify)
x = Symbol('x')
z = Symbol('z', polar=True)
f = Function('f')
ES = {}
assert polarify(-1) == (polar_lift(-1), ES)
assert polarify(1 + I) == (polar_lift(1 + I), ES)
assert polarify(exp(x), subs=False) == exp(x)
assert polarify(1 + x, subs=False) == 1 + x
assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x
assert polarify(x, lift=True) == polar_lift(x)
assert polarify(z, lift=True) == z
assert polarify(f(x), lift=True) == f(polar_lift(x))
assert polarify(1 + x, lift=True) == polar_lift(1 + x)
assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))
newex, subs = polarify(f(x) + z)
assert newex.subs(subs) == f(x) + z
mu = Symbol("mu")
sigma = Symbol("sigma", positive=True)
# Make sure polarify(lift=True) doesn't try to lift the integration
# variable
assert polarify(
Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
(x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)*
exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)**
(2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
def test_unpolarify():
from sympy.functions.elementary.complexes import (polar_lift, principal_branch, unpolarify)
from sympy.core.relational import Ne
from sympy.functions.elementary.hyperbolic import tanh
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
from sympy.abc import x
p = exp_polar(7*I) + 1
u = exp(7*I) + 1
assert unpolarify(1) == 1
assert unpolarify(p) == u
assert unpolarify(p**2) == u**2
assert unpolarify(p**x) == p**x
assert unpolarify(p*x) == u*x
assert unpolarify(p + x) == u + x
assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))
# Test reduction to principal branch 2*pi.
t = principal_branch(x, 2*pi)
assert unpolarify(t) == x
assert unpolarify(sqrt(t)) == sqrt(t)
# Test exponents_only.
assert unpolarify(p**p, exponents_only=True) == p**u
assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)
# Test functions.
assert unpolarify(sin(p)) == sin(u)
assert unpolarify(tanh(p)) == tanh(u)
assert unpolarify(gamma(p)) == gamma(u)
assert unpolarify(erf(p)) == erf(u)
assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)
assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
uppergamma(sin(u), sin(u + 1))
assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
uppergamma(0, 2)
assert unpolarify(Eq(p, 0)) == Eq(u, 0)
assert unpolarify(Ne(p, 0)) == Ne(u, 0)
assert unpolarify(polar_lift(x) > 0) == (x > 0)
# Test bools
assert unpolarify(True) is True
def test_issue_4035():
x = Symbol('x')
assert Abs(x).expand(trig=True) == Abs(x)
assert sign(x).expand(trig=True) == sign(x)
assert arg(x).expand(trig=True) == arg(x)
def test_issue_3206():
x = Symbol('x')
assert Abs(Abs(x)) == Abs(x)
def test_issue_4754_derivative_conjugate():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
f = Function('f')
assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate()
assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate()
def test_derivatives_issue_4757():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
f = Function('f')
assert re(f(x)).diff(x) == re(f(x).diff(x))
assert im(f(x)).diff(x) == im(f(x).diff(x))
assert re(f(y)).diff(y) == -I*im(f(y).diff(y))
assert im(f(y)).diff(y) == -I*re(f(y).diff(y))
assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2)
assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4)
assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2)
assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4)
def test_issue_11413():
from sympy.simplify.simplify import simplify
v0 = Symbol('v0')
v1 = Symbol('v1')
v2 = Symbol('v2')
V = Matrix([[v0],[v1],[v2]])
U = V.normalized()
assert U == Matrix([
[v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
[v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
[v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]])
U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2))
assert simplify(U.norm) == 1
def test_periodic_argument():
from sympy.functions.elementary.complexes import (periodic_argument, polar_lift, principal_branch, unbranched_argument)
x = Symbol('x')
p = Symbol('p', positive=True)
assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
assert N_equals(unbranched_argument((1 + I)**2), pi/2)
assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)
assert unbranched_argument(principal_branch(x, pi)) == \
periodic_argument(x, pi)
assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
assert periodic_argument(polar_lift(2 + I), 2*pi) == \
periodic_argument(2 + I, 2*pi)
assert periodic_argument(polar_lift(2 + I), 3*pi) == \
periodic_argument(2 + I, 3*pi)
assert periodic_argument(polar_lift(2 + I), pi) == \
periodic_argument(polar_lift(2 + I), pi)
assert unbranched_argument(polar_lift(1 + I)) == pi/4
assert periodic_argument(2*p, p) == periodic_argument(p, p)
assert periodic_argument(pi*p, p) == periodic_argument(p, p)
assert Abs(polar_lift(1 + I)) == Abs(1 + I)
@XFAIL
def test_principal_branch_fail():
# TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf?
from sympy.functions.elementary.complexes import principal_branch
assert N_equals(principal_branch((1 + I)**2, pi/2), 0)
def test_principal_branch():
from sympy.functions.elementary.complexes import (polar_lift, principal_branch)
p = Symbol('p', positive=True)
x = Symbol('x')
neg = Symbol('x', negative=True)
assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
assert principal_branch(2*x, p) == 2*principal_branch(x, p)
assert principal_branch(1, pi) == exp_polar(0)
assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
assert principal_branch(-1, pi) == exp_polar(0)
assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
principal_branch(exp_polar(I*pi)*x, 2*pi)
assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)
# related to issue #14692
assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \
exp_polar(-I*pi/2)/neg
assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)
# test argument sanitization
assert principal_branch(x, I).func is principal_branch
assert principal_branch(x, -4).func is principal_branch
assert principal_branch(x, -oo).func is principal_branch
assert principal_branch(x, zoo).func is principal_branch
@XFAIL
def test_issue_6167_6151():
n = pi**1000
i = int(n)
assert sign(n - i) == 1
assert abs(n - i) == n - i
x = Symbol('x')
eps = pi**-1500
big = pi**1000
one = cos(x)**2 + sin(x)**2
e = big*one - big + eps
from sympy.simplify.simplify import simplify
assert sign(simplify(e)) == 1
for xi in (111, 11, 1, Rational(1, 10)):
assert sign(e.subs(x, xi)) == 1
def test_issue_14216():
from sympy.functions.elementary.complexes import unpolarify
A = MatrixSymbol("A", 2, 2)
assert unpolarify(A[0, 0]) == A[0, 0]
assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0]
def test_issue_14238():
# doesn't cause recursion error
r = Symbol('r', real=True)
assert Abs(r + Piecewise((0, r > 0), (1 - r, True)))
def test_issue_22189():
x = Symbol('x')
for a in (sqrt(7 - 2*x) - 2, 1 - x):
assert Abs(a) - Abs(-a) == 0, a
def test_zero_assumptions():
nr = Symbol('nonreal', real=False, finite=True)
ni = Symbol('nonimaginary', imaginary=False)
# imaginary implies not zero
nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False)
assert re(nr).is_zero is None
assert im(nr).is_zero is False
assert re(ni).is_zero is None
assert im(ni).is_zero is None
assert re(nzni).is_zero is False
assert im(nzni).is_zero is None
@_both_exp_pow
def test_issue_15893():
f = Function('f', real=True)
x = Symbol('x', real=True)
eq = Derivative(Abs(f(x)), f(x))
assert eq.doit() == sign(f(x))
|