Spaces:
Running
Running
File size: 7,271 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
r"""A module for special angle formulas for trigonometric functions
TODO
====
This module should be developed in the future to contain direct square root
representation of
.. math
F(\frac{n}{m} \pi)
for every
- $m \in \{ 3, 5, 17, 257, 65537 \}$
- $n \in \mathbb{N}$, $0 \le n < m$
- $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$
Without multi-step rewrites
(e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$)
or using chebyshev identities
(e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $),
which are trivial to implement in sympy,
and had used to give overly complicated expressions.
The reference can be found below, if anyone may need help implementing them.
References
==========
.. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction
of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37.
10.1007/BF03024829.
.. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime
"""
from __future__ import annotations
from typing import Callable
from functools import reduce
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.intfunc import igcdex
from sympy.core.numbers import Integer
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.core.cache import cacheit
def migcdex(*x: int) -> tuple[tuple[int, ...], int]:
r"""Compute extended gcd for multiple integers.
Explanation
===========
Given the integers $x_1, \cdots, x_n$ and
an extended gcd for multiple arguments are defined as a solution
$(y_1, \cdots, y_n), g$ for the diophantine equation
$x_1 y_1 + \cdots + x_n y_n = g$ such that
$g = \gcd(x_1, \cdots, x_n)$.
Examples
========
>>> from sympy.functions.elementary._trigonometric_special import migcdex
>>> migcdex()
((), 0)
>>> migcdex(4)
((1,), 4)
>>> migcdex(4, 6)
((-1, 1), 2)
>>> migcdex(6, 10, 15)
((1, 1, -1), 1)
"""
if not x:
return (), 0
if len(x) == 1:
return (1,), x[0]
if len(x) == 2:
u, v, h = igcdex(x[0], x[1])
return (u, v), h
y, g = migcdex(*x[1:])
u, v, h = igcdex(x[0], g)
return (u, *(v * i for i in y)), h
def ipartfrac(*denoms: int) -> tuple[int, ...]:
r"""Compute the partial fraction decomposition.
Explanation
===========
Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all
$q_1, \cdots, q_n$ are pairwise coprime,
A partial fraction decomposition is defined as
.. math::
\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}
And it can be derived from solving the following diophantine equation for
the $p_1, \cdots, p_n$
.. math::
1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i
Where $q_1, \cdots, q_n$ being pairwise coprime implies
$\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$,
which guarantees the existence of the solution.
It is sufficient to compute partial fraction decomposition only
for numerator $1$ because partial fraction decomposition for any
$\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying
the result by $n$ afterwards.
Parameters
==========
denoms : int
The pairwise coprime integer denominators $q_i$ which defines the
rational number $\frac{1}{q_1 \cdots q_n}$
Returns
=======
tuple[int, ...]
The list of numerators which semantically corresponds to $p_i$ of the
partial fraction decomposition
$\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$
Examples
========
>>> from sympy import Rational, Mul
>>> from sympy.functions.elementary._trigonometric_special import ipartfrac
>>> denoms = 2, 3, 5
>>> numers = ipartfrac(2, 3, 5)
>>> numers
(1, 7, -14)
>>> Rational(1, Mul(*denoms))
1/30
>>> out = 0
>>> for n, d in zip(numers, denoms):
... out += Rational(n, d)
>>> out
1/30
"""
if not denoms:
return ()
def mul(x: int, y: int) -> int:
return x * y
denom = reduce(mul, denoms)
a = [denom // x for x in denoms]
h, _ = migcdex(*a)
return h
def fermat_coords(n: int) -> list[int] | None:
"""If n can be factored in terms of Fermat primes with
multiplicity of each being 1, return those primes, else
None
"""
primes = []
for p in [3, 5, 17, 257, 65537]:
quotient, remainder = divmod(n, p)
if remainder == 0:
n = quotient
primes.append(p)
if n == 1:
return primes
return None
@cacheit
def cos_3() -> Expr:
r"""Computes $\cos \frac{\pi}{3}$ in square roots"""
return S.Half
@cacheit
def cos_5() -> Expr:
r"""Computes $\cos \frac{\pi}{5}$ in square roots"""
return (sqrt(5) + 1) / 4
@cacheit
def cos_17() -> Expr:
r"""Computes $\cos \frac{\pi}{17}$ in square roots"""
return sqrt(
(15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
* sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32)
@cacheit
def cos_257() -> Expr:
r"""Computes $\cos \frac{\pi}{257}$ in square roots
References
==========
.. [*] https://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
.. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
"""
def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]:
return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2
def f2(a: Expr, b: Expr) -> Expr:
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(S.NegativeOne, Integer(256))
z1, z3 = f1(t1, Integer(64))
z2, z4 = f1(t2, Integer(64))
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
def cos_table() -> dict[int, Callable[[], Expr]]:
r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for
$n \in \{3, 5, 17, 257, 65537\}$.
Notes
=====
65537 is the only other known Fermat prime and it is nearly impossible to
build in the current SymPy due to performance issues.
References
==========
https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
"""
return {
3: cos_3,
5: cos_5,
17: cos_17,
257: cos_257
}
|