File size: 51,650 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
from __future__ import annotations

from .basic import Atom, Basic
from .sorting import ordered
from .evalf import EvalfMixin
from .function import AppliedUndef
from .numbers import int_valued
from .singleton import S
from .sympify import _sympify, SympifyError
from .parameters import global_parameters
from .logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
from sympy.logic.boolalg import Boolean, BooleanAtom
from sympy.utilities.iterables import sift
from sympy.utilities.misc import filldedent
from sympy.utilities.exceptions import sympy_deprecation_warning


__all__ = (
    'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
    'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
    'StrictGreaterThan', 'GreaterThan',
)

from .expr import Expr
from sympy.multipledispatch import dispatch
from .containers import Tuple
from .symbol import Symbol


def _nontrivBool(side):
    return isinstance(side, Boolean) and \
           not isinstance(side, Atom)


# Note, see issue 4986.  Ideally, we wouldn't want to subclass both Boolean
# and Expr.
# from .. import Expr


def _canonical(cond):
    # return a condition in which all relationals are canonical
    reps = {r: r.canonical for r in cond.atoms(Relational)}
    return cond.xreplace(reps)
    # XXX: AttributeError was being caught here but it wasn't triggered by any of
    # the tests so I've removed it...


def _canonical_coeff(rel):
    # return -2*x + 1 < 0 as x > 1/2
    # XXX make this part of Relational.canonical?
    rel = rel.canonical
    if not rel.is_Relational or rel.rhs.is_Boolean:
        return rel  # Eq(x, True)
    b, l = rel.lhs.as_coeff_Add(rational=True)
    m, lhs = l.as_coeff_Mul(rational=True)
    rhs = (rel.rhs - b)/m
    if m < 0:
        return rel.reversed.func(lhs, rhs)
    return rel.func(lhs, rhs)


class Relational(Boolean, EvalfMixin):
    """Base class for all relation types.

    Explanation
    ===========

    Subclasses of Relational should generally be instantiated directly, but
    Relational can be instantiated with a valid ``rop`` value to dispatch to
    the appropriate subclass.

    Parameters
    ==========

    rop : str or None
        Indicates what subclass to instantiate.  Valid values can be found
        in the keys of Relational.ValidRelationOperator.

    Examples
    ========

    >>> from sympy import Rel
    >>> from sympy.abc import x, y
    >>> Rel(y, x + x**2, '==')
    Eq(y, x**2 + x)

    A relation's type can be defined upon creation using ``rop``.
    The relation type of an existing expression can be obtained
    using its ``rel_op`` property.
    Here is a table of all the relation types, along with their
    ``rop`` and ``rel_op`` values:

    +---------------------+----------------------------+------------+
    |Relation             |``rop``                     |``rel_op``  |
    +=====================+============================+============+
    |``Equality``         |``==`` or ``eq`` or ``None``|``==``      |
    +---------------------+----------------------------+------------+
    |``Unequality``       |``!=`` or ``ne``            |``!=``      |
    +---------------------+----------------------------+------------+
    |``GreaterThan``      |``>=`` or ``ge``            |``>=``      |
    +---------------------+----------------------------+------------+
    |``LessThan``         |``<=`` or ``le``            |``<=``      |
    +---------------------+----------------------------+------------+
    |``StrictGreaterThan``|``>`` or ``gt``             |``>``       |
    +---------------------+----------------------------+------------+
    |``StrictLessThan``   |``<`` or ``lt``             |``<``       |
    +---------------------+----------------------------+------------+

    For example, setting ``rop`` to ``==`` produces an
    ``Equality`` relation, ``Eq()``.
    So does setting ``rop`` to ``eq``, or leaving ``rop`` unspecified.
    That is, the first three ``Rel()`` below all produce the same result.
    Using a ``rop`` from a different row in the table produces a
    different relation type.
    For example, the fourth ``Rel()`` below using ``lt`` for ``rop``
    produces a ``StrictLessThan`` inequality:

    >>> from sympy import Rel
    >>> from sympy.abc import x, y
    >>> Rel(y, x + x**2, '==')
        Eq(y, x**2 + x)
    >>> Rel(y, x + x**2, 'eq')
        Eq(y, x**2 + x)
    >>> Rel(y, x + x**2)
        Eq(y, x**2 + x)
    >>> Rel(y, x + x**2, 'lt')
        y < x**2 + x

    To obtain the relation type of an existing expression,
    get its ``rel_op`` property.
    For example, ``rel_op`` is ``==`` for the ``Equality`` relation above,
    and ``<`` for the strict less than inequality above:

    >>> from sympy import Rel
    >>> from sympy.abc import x, y
    >>> my_equality = Rel(y, x + x**2, '==')
    >>> my_equality.rel_op
        '=='
    >>> my_inequality = Rel(y, x + x**2, 'lt')
    >>> my_inequality.rel_op
        '<'

    """
    __slots__ = ()

    ValidRelationOperator: dict[str | None, type[Relational]] = {}

    is_Relational = True

    # ValidRelationOperator - Defined below, because the necessary classes
    #   have not yet been defined

    def __new__(cls, lhs, rhs, rop=None, **assumptions):
        # If called by a subclass, do nothing special and pass on to Basic.
        if cls is not Relational:
            return Basic.__new__(cls, lhs, rhs, **assumptions)

        # XXX: Why do this? There should be a separate function to make a
        # particular subclass of Relational from a string.
        #
        # If called directly with an operator, look up the subclass
        # corresponding to that operator and delegate to it
        cls = cls.ValidRelationOperator.get(rop, None)
        if cls is None:
            raise ValueError("Invalid relational operator symbol: %r" % rop)

        if not issubclass(cls, (Eq, Ne)):
            # validate that Booleans are not being used in a relational
            # other than Eq/Ne;
            # Note: Symbol is a subclass of Boolean but is considered
            # acceptable here.
            if any(map(_nontrivBool, (lhs, rhs))):
                raise TypeError(filldedent('''
                    A Boolean argument can only be used in
                    Eq and Ne; all other relationals expect
                    real expressions.
                '''))

        return cls(lhs, rhs, **assumptions)

    @property
    def lhs(self):
        """The left-hand side of the relation."""
        return self._args[0]

    @property
    def rhs(self):
        """The right-hand side of the relation."""
        return self._args[1]

    @property
    def reversed(self):
        """Return the relationship with sides reversed.

        Examples
        ========

        >>> from sympy import Eq
        >>> from sympy.abc import x
        >>> Eq(x, 1)
        Eq(x, 1)
        >>> _.reversed
        Eq(1, x)
        >>> x < 1
        x < 1
        >>> _.reversed
        1 > x
        """
        ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
        a, b = self.args
        return Relational.__new__(ops.get(self.func, self.func), b, a)

    @property
    def reversedsign(self):
        """Return the relationship with signs reversed.

        Examples
        ========

        >>> from sympy import Eq
        >>> from sympy.abc import x
        >>> Eq(x, 1)
        Eq(x, 1)
        >>> _.reversedsign
        Eq(-x, -1)
        >>> x < 1
        x < 1
        >>> _.reversedsign
        -x > -1
        """
        a, b = self.args
        if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
            ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
            return Relational.__new__(ops.get(self.func, self.func), -a, -b)
        else:
            return self

    @property
    def negated(self):
        """Return the negated relationship.

        Examples
        ========

        >>> from sympy import Eq
        >>> from sympy.abc import x
        >>> Eq(x, 1)
        Eq(x, 1)
        >>> _.negated
        Ne(x, 1)
        >>> x < 1
        x < 1
        >>> _.negated
        x >= 1

        Notes
        =====

        This works more or less identical to ``~``/``Not``. The difference is
        that ``negated`` returns the relationship even if ``evaluate=False``.
        Hence, this is useful in code when checking for e.g. negated relations
        to existing ones as it will not be affected by the `evaluate` flag.

        """
        ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
        # If there ever will be new Relational subclasses, the following line
        # will work until it is properly sorted out
        # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
        #      b, evaluate=evaluate)))(*self.args, evaluate=False)
        return Relational.__new__(ops.get(self.func), *self.args)

    @property
    def weak(self):
        """return the non-strict version of the inequality or self

        EXAMPLES
        ========

        >>> from sympy.abc import x
        >>> (x < 1).weak
        x <= 1
        >>> _.weak
        x <= 1
        """
        return self

    @property
    def strict(self):
        """return the strict version of the inequality or self

        EXAMPLES
        ========

        >>> from sympy.abc import x
        >>> (x <= 1).strict
        x < 1
        >>> _.strict
        x < 1
        """
        return self

    def _eval_evalf(self, prec):
        return self.func(*[s._evalf(prec) for s in self.args])

    @property
    def canonical(self):
        """Return a canonical form of the relational by putting a
        number on the rhs, canonically removing a sign or else
        ordering the args canonically. No other simplification is
        attempted.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> x < 2
        x < 2
        >>> _.reversed.canonical
        x < 2
        >>> (-y < x).canonical
        x > -y
        >>> (-y > x).canonical
        x < -y
        >>> (-y < -x).canonical
        x < y

        The canonicalization is recursively applied:

        >>> from sympy import Eq
        >>> Eq(x < y, y > x).canonical
        True
        """
        args = tuple([i.canonical if isinstance(i, Relational) else i for i in self.args])
        if args != self.args:
            r = self.func(*args)
            if not isinstance(r, Relational):
                return r
        else:
            r = self
        if r.rhs.is_number:
            if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
                r = r.reversed
        elif r.lhs.is_number:
            r = r.reversed
        elif tuple(ordered(args)) != args:
            r = r.reversed

        LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
        RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)

        if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
            return r

        # Check if first value has negative sign
        if LHS_CEMS and LHS_CEMS():
            return r.reversedsign
        elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
            # Right hand side has a minus, but not lhs.
            # How does the expression with reversed signs behave?
            # This is so that expressions of the type
            # Eq(x, -y) and Eq(-x, y)
            # have the same canonical representation
            expr1, _ = ordered([r.lhs, -r.rhs])
            if expr1 != r.lhs:
                return r.reversed.reversedsign

        return r

    def equals(self, other, failing_expression=False):
        """Return True if the sides of the relationship are mathematically
        identical and the type of relationship is the same.
        If failing_expression is True, return the expression whose truth value
        was unknown."""
        if isinstance(other, Relational):
            if other in (self, self.reversed):
                return True
            a, b = self, other
            if a.func in (Eq, Ne) or b.func in (Eq, Ne):
                if a.func != b.func:
                    return False
                left, right = [i.equals(j,
                                        failing_expression=failing_expression)
                               for i, j in zip(a.args, b.args)]
                if left is True:
                    return right
                if right is True:
                    return left
                lr, rl = [i.equals(j, failing_expression=failing_expression)
                          for i, j in zip(a.args, b.reversed.args)]
                if lr is True:
                    return rl
                if rl is True:
                    return lr
                e = (left, right, lr, rl)
                if all(i is False for i in e):
                    return False
                for i in e:
                    if i not in (True, False):
                        return i
            else:
                if b.func != a.func:
                    b = b.reversed
                if a.func != b.func:
                    return False
                left = a.lhs.equals(b.lhs,
                                    failing_expression=failing_expression)
                if left is False:
                    return False
                right = a.rhs.equals(b.rhs,
                                     failing_expression=failing_expression)
                if right is False:
                    return False
                if left is True:
                    return right
                return left

    def _eval_simplify(self, **kwargs):
        from .add import Add
        from .expr import Expr
        r = self
        r = r.func(*[i.simplify(**kwargs) for i in r.args])
        if r.is_Relational:
            if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr):
                return r
            dif = r.lhs - r.rhs
            # replace dif with a valid Number that will
            # allow a definitive comparison with 0
            v = None
            if dif.is_comparable:
                v = dif.n(2)
                if any(i._prec == 1 for i in v.as_real_imag()):
                    rv, iv = [i.n(2) for i in dif.as_real_imag()]
                    v = rv + S.ImaginaryUnit*iv
            elif dif.equals(0):  # XXX this is expensive
                v = S.Zero
            if v is not None:
                r = r.func._eval_relation(v, S.Zero)
            r = r.canonical
            # If there is only one symbol in the expression,
            # try to write it on a simplified form
            free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
            if len(free) == 1:
                try:
                    from sympy.solvers.solveset import linear_coeffs
                    x = free.pop()
                    dif = r.lhs - r.rhs
                    m, b = linear_coeffs(dif, x)
                    if m.is_zero is False:
                        if m.is_negative:
                            # Dividing with a negative number, so change order of arguments
                            # canonical will put the symbol back on the lhs later
                            r = r.func(-b / m, x)
                        else:
                            r = r.func(x, -b / m)
                    else:
                        r = r.func(b, S.Zero)
                except ValueError:
                    # maybe not a linear function, try polynomial
                    from sympy.polys.polyerrors import PolynomialError
                    from sympy.polys.polytools import gcd, Poly, poly
                    try:
                        p = poly(dif, x)
                        c = p.all_coeffs()
                        constant = c[-1]
                        c[-1] = 0
                        scale = gcd(c)
                        c = [ctmp / scale for ctmp in c]
                        r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
                    except PolynomialError:
                        pass
            elif len(free) >= 2:
                try:
                    from sympy.solvers.solveset import linear_coeffs
                    from sympy.polys.polytools import gcd
                    free = list(ordered(free))
                    dif = r.lhs - r.rhs
                    m = linear_coeffs(dif, *free)
                    constant = m[-1]
                    del m[-1]
                    scale = gcd(m)
                    m = [mtmp / scale for mtmp in m]
                    nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
                    if scale.is_zero is False:
                        if constant != 0:
                            # lhs: expression, rhs: constant
                            newexpr = Add(*[i * j for i, j in nzm])
                            r = r.func(newexpr, -constant / scale)
                        else:
                            # keep first term on lhs
                            lhsterm = nzm[0][0] * nzm[0][1]
                            del nzm[0]
                            newexpr = Add(*[i * j for i, j in nzm])
                            r = r.func(lhsterm, -newexpr)

                    else:
                        r = r.func(constant, S.Zero)
                except ValueError:
                    pass
        # Did we get a simplified result?
        r = r.canonical
        measure = kwargs['measure']
        if measure(r) < kwargs['ratio'] * measure(self):
            return r
        else:
            return self

    def _eval_trigsimp(self, **opts):
        from sympy.simplify.trigsimp import trigsimp
        return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))

    def expand(self, **kwargs):
        args = (arg.expand(**kwargs) for arg in self.args)
        return self.func(*args)

    def __bool__(self):
        raise TypeError("cannot determine truth value of Relational")

    def _eval_as_set(self):
        # self is univariate and periodicity(self, x) in (0, None)
        from sympy.solvers.inequalities import solve_univariate_inequality
        from sympy.sets.conditionset import ConditionSet
        syms = self.free_symbols
        assert len(syms) == 1
        x = syms.pop()
        try:
            xset = solve_univariate_inequality(self, x, relational=False)
        except NotImplementedError:
            # solve_univariate_inequality raises NotImplementedError for
            # unsolvable equations/inequalities.
            xset = ConditionSet(x, self, S.Reals)
        return xset

    @property
    def binary_symbols(self):
        # override where necessary
        return set()


Rel = Relational


class Equality(Relational):
    """
    An equal relation between two objects.

    Explanation
    ===========

    Represents that two objects are equal.  If they can be easily shown
    to be definitively equal (or unequal), this will reduce to True (or
    False).  Otherwise, the relation is maintained as an unevaluated
    Equality object.  Use the ``simplify`` function on this object for
    more nontrivial evaluation of the equality relation.

    As usual, the keyword argument ``evaluate=False`` can be used to
    prevent any evaluation.

    Examples
    ========

    >>> from sympy import Eq, simplify, exp, cos
    >>> from sympy.abc import x, y
    >>> Eq(y, x + x**2)
    Eq(y, x**2 + x)
    >>> Eq(2, 5)
    False
    >>> Eq(2, 5, evaluate=False)
    Eq(2, 5)
    >>> _.doit()
    False
    >>> Eq(exp(x), exp(x).rewrite(cos))
    Eq(exp(x), sinh(x) + cosh(x))
    >>> simplify(_)
    True

    See Also
    ========

    sympy.logic.boolalg.Equivalent : for representing equality between two
        boolean expressions

    Notes
    =====

    Python treats 1 and True (and 0 and False) as being equal; SymPy
    does not. And integer will always compare as unequal to a Boolean:

    >>> Eq(True, 1), True == 1
    (False, True)

    This class is not the same as the == operator.  The == operator tests
    for exact structural equality between two expressions; this class
    compares expressions mathematically.

    If either object defines an ``_eval_Eq`` method, it can be used in place of
    the default algorithm.  If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)``
    returns anything other than None, that return value will be substituted for
    the Equality.  If None is returned by ``_eval_Eq``, an Equality object will
    be created as usual.

    Since this object is already an expression, it does not respond to
    the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``.
    If ``eq = Eq(x, y)`` then write `eq.lhs - eq.rhs` to get ``x - y``.

    .. deprecated:: 1.5

       ``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``,
       but this behavior is deprecated and will be removed in a future version
       of SymPy.

    """
    rel_op = '=='

    __slots__ = ()

    is_Equality = True

    def __new__(cls, lhs, rhs, **options):
        evaluate = options.pop('evaluate', global_parameters.evaluate)
        lhs = _sympify(lhs)
        rhs = _sympify(rhs)
        if evaluate:
            val = is_eq(lhs, rhs)
            if val is None:
                return cls(lhs, rhs, evaluate=False)
            else:
                return _sympify(val)

        return Relational.__new__(cls, lhs, rhs)

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        return _sympify(lhs == rhs)

    def _eval_rewrite_as_Add(self, L, R, evaluate=True, **kwargs):
        """
        return Eq(L, R) as L - R. To control the evaluation of
        the result set pass `evaluate=True` to give L - R;
        if `evaluate=None` then terms in L and R will not cancel
        but they will be listed in canonical order; otherwise
        non-canonical args will be returned. If one side is 0, the
        non-zero side will be returned.

        .. deprecated:: 1.13

           The method ``Eq.rewrite(Add)`` is deprecated.
           See :ref:`eq-rewrite-Add` for details.

        Examples
        ========

        >>> from sympy import Eq, Add
        >>> from sympy.abc import b, x
        >>> eq = Eq(x + b, x - b)
        >>> eq.rewrite(Add)  #doctest: +SKIP
        2*b
        >>> eq.rewrite(Add, evaluate=None).args  #doctest: +SKIP
        (b, b, x, -x)
        >>> eq.rewrite(Add, evaluate=False).args  #doctest: +SKIP
        (b, x, b, -x)
        """
        sympy_deprecation_warning("""
        Eq.rewrite(Add) is deprecated.

        For ``eq = Eq(a, b)`` use ``eq.lhs - eq.rhs`` to obtain
        ``a - b``.
        """,
            deprecated_since_version="1.13",
            active_deprecations_target="eq-rewrite-Add",
            stacklevel=5,
        )
        from .add import _unevaluated_Add, Add
        if L == 0:
            return R
        if R == 0:
            return L
        if evaluate:
            # allow cancellation of args
            return L - R
        args = Add.make_args(L) + Add.make_args(-R)
        if evaluate is None:
            # no cancellation, but canonical
            return _unevaluated_Add(*args)
        # no cancellation, not canonical
        return Add._from_args(args)

    @property
    def binary_symbols(self):
        if S.true in self.args or S.false in self.args:
            if self.lhs.is_Symbol:
                return {self.lhs}
            elif self.rhs.is_Symbol:
                return {self.rhs}
        return set()

    def _eval_simplify(self, **kwargs):
        # standard simplify
        e = super()._eval_simplify(**kwargs)
        if not isinstance(e, Equality):
            return e
        from .expr import Expr
        if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr):
            return e
        free = self.free_symbols
        if len(free) == 1:
            try:
                from .add import Add
                from sympy.solvers.solveset import linear_coeffs
                x = free.pop()
                m, b = linear_coeffs(
                    Add(e.lhs, -e.rhs, evaluate=False), x)
                if m.is_zero is False:
                    enew = e.func(x, -b / m)
                else:
                    enew = e.func(m * x, -b)
                measure = kwargs['measure']
                if measure(enew) <= kwargs['ratio'] * measure(e):
                    e = enew
            except ValueError:
                pass
        return e.canonical

    def integrate(self, *args, **kwargs):
        """See the integrate function in sympy.integrals"""
        from sympy.integrals.integrals import integrate
        return integrate(self, *args, **kwargs)

    def as_poly(self, *gens, **kwargs):
        '''Returns lhs-rhs as a Poly

        Examples
        ========

        >>> from sympy import Eq
        >>> from sympy.abc import x
        >>> Eq(x**2, 1).as_poly(x)
        Poly(x**2 - 1, x, domain='ZZ')
        '''
        return (self.lhs - self.rhs).as_poly(*gens, **kwargs)


Eq = Equality


class Unequality(Relational):
    """An unequal relation between two objects.

    Explanation
    ===========

    Represents that two objects are not equal.  If they can be shown to be
    definitively equal, this will reduce to False; if definitively unequal,
    this will reduce to True.  Otherwise, the relation is maintained as an
    Unequality object.

    Examples
    ========

    >>> from sympy import Ne
    >>> from sympy.abc import x, y
    >>> Ne(y, x+x**2)
    Ne(y, x**2 + x)

    See Also
    ========
    Equality

    Notes
    =====
    This class is not the same as the != operator.  The != operator tests
    for exact structural equality between two expressions; this class
    compares expressions mathematically.

    This class is effectively the inverse of Equality.  As such, it uses the
    same algorithms, including any available `_eval_Eq` methods.

    """
    rel_op = '!='

    __slots__ = ()

    def __new__(cls, lhs, rhs, **options):
        lhs = _sympify(lhs)
        rhs = _sympify(rhs)
        evaluate = options.pop('evaluate', global_parameters.evaluate)
        if evaluate:
            val = is_neq(lhs, rhs)
            if val is None:
                return cls(lhs, rhs, evaluate=False)
            else:
                return _sympify(val)

        return Relational.__new__(cls, lhs, rhs, **options)

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        return _sympify(lhs != rhs)

    @property
    def binary_symbols(self):
        if S.true in self.args or S.false in self.args:
            if self.lhs.is_Symbol:
                return {self.lhs}
            elif self.rhs.is_Symbol:
                return {self.rhs}
        return set()

    def _eval_simplify(self, **kwargs):
        # simplify as an equality
        eq = Equality(*self.args)._eval_simplify(**kwargs)
        if isinstance(eq, Equality):
            # send back Ne with the new args
            return self.func(*eq.args)
        return eq.negated  # result of Ne is the negated Eq


Ne = Unequality


class _Inequality(Relational):
    """Internal base class for all *Than types.

    Each subclass must implement _eval_relation to provide the method for
    comparing two real numbers.

    """
    __slots__ = ()

    def __new__(cls, lhs, rhs, **options):

        try:
            lhs = _sympify(lhs)
            rhs = _sympify(rhs)
        except SympifyError:
            return NotImplemented

        evaluate = options.pop('evaluate', global_parameters.evaluate)
        if evaluate:
            for me in (lhs, rhs):
                if me.is_extended_real is False:
                    raise TypeError("Invalid comparison of non-real %s" % me)
                if me is S.NaN:
                    raise TypeError("Invalid NaN comparison")
            # First we invoke the appropriate inequality method of `lhs`
            # (e.g., `lhs.__lt__`).  That method will try to reduce to
            # boolean or raise an exception.  It may keep calling
            # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
            # In some cases, `Expr` will just invoke us again (if neither it
            # nor a subclass was able to reduce to boolean or raise an
            # exception).  In that case, it must call us with
            # `evaluate=False` to prevent infinite recursion.
            return cls._eval_relation(lhs, rhs, **options)

        # make a "non-evaluated" Expr for the inequality
        return Relational.__new__(cls, lhs, rhs, **options)

    @classmethod
    def _eval_relation(cls, lhs, rhs, **options):
        val = cls._eval_fuzzy_relation(lhs, rhs)
        if val is None:
            return cls(lhs, rhs, evaluate=False)
        else:
            return _sympify(val)


class _Greater(_Inequality):
    """Not intended for general use

    _Greater is only used so that GreaterThan and StrictGreaterThan may
    subclass it for the .gts and .lts properties.

    """
    __slots__ = ()

    @property
    def gts(self):
        return self._args[0]

    @property
    def lts(self):
        return self._args[1]


class _Less(_Inequality):
    """Not intended for general use.

    _Less is only used so that LessThan and StrictLessThan may subclass it for
    the .gts and .lts properties.

    """
    __slots__ = ()

    @property
    def gts(self):
        return self._args[1]

    @property
    def lts(self):
        return self._args[0]


class GreaterThan(_Greater):
    r"""Class representations of inequalities.

    Explanation
    ===========

    The ``*Than`` classes represent inequal relationships, where the left-hand
    side is generally bigger or smaller than the right-hand side.  For example,
    the GreaterThan class represents an inequal relationship where the
    left-hand side is at least as big as the right side, if not bigger.  In
    mathematical notation:

    lhs $\ge$ rhs

    In total, there are four ``*Than`` classes, to represent the four
    inequalities:

    +-----------------+--------+
    |Class Name       | Symbol |
    +=================+========+
    |GreaterThan      | ``>=`` |
    +-----------------+--------+
    |LessThan         | ``<=`` |
    +-----------------+--------+
    |StrictGreaterThan| ``>``  |
    +-----------------+--------+
    |StrictLessThan   | ``<``  |
    +-----------------+--------+

    All classes take two arguments, lhs and rhs.

    +----------------------------+-----------------+
    |Signature Example           | Math Equivalent |
    +============================+=================+
    |GreaterThan(lhs, rhs)       |   lhs $\ge$ rhs |
    +----------------------------+-----------------+
    |LessThan(lhs, rhs)          |   lhs $\le$ rhs |
    +----------------------------+-----------------+
    |StrictGreaterThan(lhs, rhs) |   lhs $>$ rhs   |
    +----------------------------+-----------------+
    |StrictLessThan(lhs, rhs)    |   lhs $<$ rhs   |
    +----------------------------+-----------------+

    In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
    objects also have the .lts and .gts properties, which represent the "less
    than side" and "greater than side" of the operator.  Use of .lts and .gts
    in an algorithm rather than .lhs and .rhs as an assumption of inequality
    direction will make more explicit the intent of a certain section of code,
    and will make it similarly more robust to client code changes:

    >>> from sympy import GreaterThan, StrictGreaterThan
    >>> from sympy import LessThan, StrictLessThan
    >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
    >>> from sympy.abc import x, y, z
    >>> from sympy.core.relational import Relational

    >>> e = GreaterThan(x, 1)
    >>> e
    x >= 1
    >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
    'x >= 1 is the same as 1 <= x'

    Examples
    ========

    One generally does not instantiate these classes directly, but uses various
    convenience methods:

    >>> for f in [Ge, Gt, Le, Lt]:  # convenience wrappers
    ...     print(f(x, 2))
    x >= 2
    x > 2
    x <= 2
    x < 2

    Another option is to use the Python inequality operators (``>=``, ``>``,
    ``<=``, ``<``) directly.  Their main advantage over the ``Ge``, ``Gt``,
    ``Le``, and ``Lt`` counterparts, is that one can write a more
    "mathematical looking" statement rather than littering the math with
    oddball function calls.  However there are certain (minor) caveats of
    which to be aware (search for 'gotcha', below).

    >>> x >= 2
    x >= 2
    >>> _ == Ge(x, 2)
    True

    However, it is also perfectly valid to instantiate a ``*Than`` class less
    succinctly and less conveniently:

    >>> Rel(x, 1, ">")
    x > 1
    >>> Relational(x, 1, ">")
    x > 1

    >>> StrictGreaterThan(x, 1)
    x > 1
    >>> GreaterThan(x, 1)
    x >= 1
    >>> LessThan(x, 1)
    x <= 1
    >>> StrictLessThan(x, 1)
    x < 1

    Notes
    =====

    There are a couple of "gotchas" to be aware of when using Python's
    operators.

    The first is that what your write is not always what you get:

        >>> 1 < x
        x > 1

        Due to the order that Python parses a statement, it may
        not immediately find two objects comparable.  When ``1 < x``
        is evaluated, Python recognizes that the number 1 is a native
        number and that x is *not*.  Because a native Python number does
        not know how to compare itself with a SymPy object
        Python will try the reflective operation, ``x > 1`` and that is the
        form that gets evaluated, hence returned.

        If the order of the statement is important (for visual output to
        the console, perhaps), one can work around this annoyance in a
        couple ways:

        (1) "sympify" the literal before comparison

        >>> S(1) < x
        1 < x

        (2) use one of the wrappers or less succinct methods described
        above

        >>> Lt(1, x)
        1 < x
        >>> Relational(1, x, "<")
        1 < x

    The second gotcha involves writing equality tests between relationals
    when one or both sides of the test involve a literal relational:

        >>> e = x < 1; e
        x < 1
        >>> e == e  # neither side is a literal
        True
        >>> e == x < 1  # expecting True, too
        False
        >>> e != x < 1  # expecting False
        x < 1
        >>> x < 1 != x < 1  # expecting False or the same thing as before
        Traceback (most recent call last):
        ...
        TypeError: cannot determine truth value of Relational

        The solution for this case is to wrap literal relationals in
        parentheses:

        >>> e == (x < 1)
        True
        >>> e != (x < 1)
        False
        >>> (x < 1) != (x < 1)
        False

    The third gotcha involves chained inequalities not involving
    ``==`` or ``!=``. Occasionally, one may be tempted to write:

        >>> e = x < y < z
        Traceback (most recent call last):
        ...
        TypeError: symbolic boolean expression has no truth value.

        Due to an implementation detail or decision of Python [1]_,
        there is no way for SymPy to create a chained inequality with
        that syntax so one must use And:

        >>> e = And(x < y, y < z)
        >>> type( e )
        And
        >>> e
        (x < y) & (y < z)

        Although this can also be done with the '&' operator, it cannot
        be done with the 'and' operarator:

        >>> (x < y) & (y < z)
        (x < y) & (y < z)
        >>> (x < y) and (y < z)
        Traceback (most recent call last):
        ...
        TypeError: cannot determine truth value of Relational

    .. [1] This implementation detail is that Python provides no reliable
       method to determine that a chained inequality is being built.
       Chained comparison operators are evaluated pairwise, using "and"
       logic (see
       https://docs.python.org/3/reference/expressions.html#not-in). This
       is done in an efficient way, so that each object being compared
       is only evaluated once and the comparison can short-circuit. For
       example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
       > 3)``. The ``and`` operator coerces each side into a bool,
       returning the object itself when it short-circuits. The bool of
       the --Than operators will raise TypeError on purpose, because
       SymPy cannot determine the mathematical ordering of symbolic
       expressions. Thus, if we were to compute ``x > y > z``, with
       ``x``, ``y``, and ``z`` being Symbols, Python converts the
       statement (roughly) into these steps:

        (1) x > y > z
        (2) (x > y) and (y > z)
        (3) (GreaterThanObject) and (y > z)
        (4) (GreaterThanObject.__bool__()) and (y > z)
        (5) TypeError

       Because of the ``and`` added at step 2, the statement gets turned into a
       weak ternary statement, and the first object's ``__bool__`` method will
       raise TypeError.  Thus, creating a chained inequality is not possible.

           In Python, there is no way to override the ``and`` operator, or to
           control how it short circuits, so it is impossible to make something
           like ``x > y > z`` work.  There was a PEP to change this,
           :pep:`335`, but it was officially closed in March, 2012.

    """
    __slots__ = ()

    rel_op = '>='

    @classmethod
    def _eval_fuzzy_relation(cls, lhs, rhs):
        return is_ge(lhs, rhs)

    @property
    def strict(self):
        return Gt(*self.args)

Ge = GreaterThan


class LessThan(_Less):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '<='

    @classmethod
    def _eval_fuzzy_relation(cls, lhs, rhs):
        return is_le(lhs, rhs)

    @property
    def strict(self):
        return Lt(*self.args)

Le = LessThan


class StrictGreaterThan(_Greater):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '>'

    @classmethod
    def _eval_fuzzy_relation(cls, lhs, rhs):
        return is_gt(lhs, rhs)

    @property
    def weak(self):
        return Ge(*self.args)


Gt = StrictGreaterThan


class StrictLessThan(_Less):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '<'

    @classmethod
    def _eval_fuzzy_relation(cls, lhs, rhs):
        return is_lt(lhs, rhs)

    @property
    def weak(self):
        return Le(*self.args)

Lt = StrictLessThan

# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
    None: Equality,
    '==': Equality,
    'eq': Equality,
    '!=': Unequality,
    '<>': Unequality,
    'ne': Unequality,
    '>=': GreaterThan,
    'ge': GreaterThan,
    '<=': LessThan,
    'le': LessThan,
    '>': StrictGreaterThan,
    'gt': StrictGreaterThan,
    '<': StrictLessThan,
    'lt': StrictLessThan,
}


def _n2(a, b):
    """Return (a - b).evalf(2) if a and b are comparable, else None.
    This should only be used when a and b are already sympified.
    """
    # /!\ it is very important (see issue 8245) not to
    # use a re-evaluated number in the calculation of dif
    if a.is_comparable and b.is_comparable:
        dif = (a - b).evalf(2)
        if dif.is_comparable:
            return dif


@dispatch(Expr, Expr)
def _eval_is_ge(lhs, rhs):
    return None


@dispatch(Basic, Basic)
def _eval_is_eq(lhs, rhs):
    return None


@dispatch(Tuple, Expr) # type: ignore
def _eval_is_eq(lhs, rhs):  # noqa:F811
    return False


@dispatch(Tuple, AppliedUndef) # type: ignore
def _eval_is_eq(lhs, rhs):  # noqa:F811
    return None


@dispatch(Tuple, Symbol) # type: ignore
def _eval_is_eq(lhs, rhs):  # noqa:F811
    return None


@dispatch(Tuple, Tuple) # type: ignore
def _eval_is_eq(lhs, rhs):  # noqa:F811
    if len(lhs) != len(rhs):
        return False

    return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))


def is_lt(lhs, rhs, assumptions=None):
    """Fuzzy bool for lhs is strictly less than rhs.

    See the docstring for :func:`~.is_ge` for more.
    """
    return fuzzy_not(is_ge(lhs, rhs, assumptions))


def is_gt(lhs, rhs, assumptions=None):
    """Fuzzy bool for lhs is strictly greater than rhs.

    See the docstring for :func:`~.is_ge` for more.
    """
    return fuzzy_not(is_le(lhs, rhs, assumptions))


def is_le(lhs, rhs, assumptions=None):
    """Fuzzy bool for lhs is less than or equal to rhs.

    See the docstring for :func:`~.is_ge` for more.
    """
    return is_ge(rhs, lhs, assumptions)


def is_ge(lhs, rhs, assumptions=None):
    """
    Fuzzy bool for *lhs* is greater than or equal to *rhs*.

    Parameters
    ==========

    lhs : Expr
        The left-hand side of the expression, must be sympified,
        and an instance of expression. Throws an exception if
        lhs is not an instance of expression.

    rhs : Expr
        The right-hand side of the expression, must be sympified
        and an instance of expression. Throws an exception if
        lhs is not an instance of expression.

    assumptions: Boolean, optional
        Assumptions taken to evaluate the inequality.

    Returns
    =======

    ``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs*
    is less than *rhs*, and ``None`` if the comparison between *lhs* and
    *rhs* is indeterminate.

    Explanation
    ===========

    This function is intended to give a relatively fast determination and
    deliberately does not attempt slow calculations that might help in
    obtaining a determination of True or False in more difficult cases.

    The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
    each implemented in terms of ``is_ge`` in the following way:

    is_ge(x, y) := is_ge(x, y)
    is_le(x, y) := is_ge(y, x)
    is_lt(x, y) := fuzzy_not(is_ge(x, y))
    is_gt(x, y) := fuzzy_not(is_ge(y, x))

    Therefore, supporting new type with this function will ensure behavior for
    other three functions as well.

    To maintain these equivalences in fuzzy logic it is important that in cases where
    either x or y is non-real all comparisons will give None.

    Examples
    ========

    >>> from sympy import S, Q
    >>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt
    >>> from sympy.abc import x
    >>> is_ge(S(2), S(0))
    True
    >>> is_ge(S(0), S(2))
    False
    >>> is_le(S(0), S(2))
    True
    >>> is_gt(S(0), S(2))
    False
    >>> is_lt(S(2), S(0))
    False

    Assumptions can be passed to evaluate the quality which is otherwise
    indeterminate.

    >>> print(is_ge(x, S(0)))
    None
    >>> is_ge(x, S(0), assumptions=Q.positive(x))
    True

    New types can be supported by dispatching to ``_eval_is_ge``.

    >>> from sympy import Expr, sympify
    >>> from sympy.multipledispatch import dispatch
    >>> class MyExpr(Expr):
    ...     def __new__(cls, arg):
    ...         return super().__new__(cls, sympify(arg))
    ...     @property
    ...     def value(self):
    ...         return self.args[0]
    >>> @dispatch(MyExpr, MyExpr)
    ... def _eval_is_ge(a, b):
    ...     return is_ge(a.value, b.value)
    >>> a = MyExpr(1)
    >>> b = MyExpr(2)
    >>> is_ge(b, a)
    True
    >>> is_le(a, b)
    True
    """
    from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative

    if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
        raise TypeError("Can only compare inequalities with Expr")

    retval = _eval_is_ge(lhs, rhs)

    if retval is not None:
        return retval
    else:
        n2 = _n2(lhs, rhs)
        if n2 is not None:
            # use float comparison for infinity.
            # otherwise get stuck in infinite recursion
            if n2 in (S.Infinity, S.NegativeInfinity):
                n2 = float(n2)
            return n2 >= 0

        _lhs = AssumptionsWrapper(lhs, assumptions)
        _rhs = AssumptionsWrapper(rhs, assumptions)
        if _lhs.is_extended_real and _rhs.is_extended_real:
            if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative):
                return True
            diff = lhs - rhs
            if diff is not S.NaN:
                rv = is_extended_nonnegative(diff, assumptions)
                if rv is not None:
                    return rv


def is_neq(lhs, rhs, assumptions=None):
    """Fuzzy bool for lhs does not equal rhs.

    See the docstring for :func:`~.is_eq` for more.
    """
    return fuzzy_not(is_eq(lhs, rhs, assumptions))


def is_eq(lhs, rhs, assumptions=None):
    """
    Fuzzy bool representing mathematical equality between *lhs* and *rhs*.

    Parameters
    ==========

    lhs : Expr
        The left-hand side of the expression, must be sympified.

    rhs : Expr
        The right-hand side of the expression, must be sympified.

    assumptions: Boolean, optional
        Assumptions taken to evaluate the equality.

    Returns
    =======

    ``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
    and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.

    Explanation
    ===========

    This function is intended to give a relatively fast determination and
    deliberately does not attempt slow calculations that might help in
    obtaining a determination of True or False in more difficult cases.

    :func:`~.is_neq` calls this function to return its value, so supporting
    new type with this function will ensure correct behavior for ``is_neq``
    as well.

    Examples
    ========

    >>> from sympy import Q, S
    >>> from sympy.core.relational import is_eq, is_neq
    >>> from sympy.abc import x
    >>> is_eq(S(0), S(0))
    True
    >>> is_neq(S(0), S(0))
    False
    >>> is_eq(S(0), S(2))
    False
    >>> is_neq(S(0), S(2))
    True

    Assumptions can be passed to evaluate the equality which is otherwise
    indeterminate.

    >>> print(is_eq(x, S(0)))
    None
    >>> is_eq(x, S(0), assumptions=Q.zero(x))
    True

    New types can be supported by dispatching to ``_eval_is_eq``.

    >>> from sympy import Basic, sympify
    >>> from sympy.multipledispatch import dispatch
    >>> class MyBasic(Basic):
    ...     def __new__(cls, arg):
    ...         return Basic.__new__(cls, sympify(arg))
    ...     @property
    ...     def value(self):
    ...         return self.args[0]
    ...
    >>> @dispatch(MyBasic, MyBasic)
    ... def _eval_is_eq(a, b):
    ...     return is_eq(a.value, b.value)
    ...
    >>> a = MyBasic(1)
    >>> b = MyBasic(1)
    >>> is_eq(a, b)
    True
    >>> is_neq(a, b)
    False

    """
    # here, _eval_Eq is only called for backwards compatibility
    # new code should use is_eq with multiple dispatch as
    # outlined in the docstring
    for side1, side2 in (lhs, rhs), (rhs, lhs):
        eval_func = getattr(side1, '_eval_Eq', None)
        if eval_func is not None:
            retval = eval_func(side2)
            if retval is not None:
                return retval

    retval = _eval_is_eq(lhs, rhs)
    if retval is not None:
        return retval

    if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
        retval = _eval_is_eq(rhs, lhs)
        if retval is not None:
            return retval

    # retval is still None, so go through the equality logic
    # If expressions have the same structure, they must be equal.
    if lhs == rhs:
        return True  # e.g. True == True
    elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
        return False  # True != False
    elif not (lhs.is_Symbol or rhs.is_Symbol) and (
        isinstance(lhs, Boolean) !=
        isinstance(rhs, Boolean)):
        return False  # only Booleans can equal Booleans

    from sympy.assumptions.wrapper import (AssumptionsWrapper,
        is_infinite, is_extended_real)
    from .add import Add

    _lhs = AssumptionsWrapper(lhs, assumptions)
    _rhs = AssumptionsWrapper(rhs, assumptions)

    if _lhs.is_infinite or _rhs.is_infinite:
        if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
            return False
        if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
            return False
        if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
            return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)])

        # Try to split real/imaginary parts and equate them
        I = S.ImaginaryUnit

        def split_real_imag(expr):
            real_imag = lambda t: (
                'real' if is_extended_real(t, assumptions) else
                'imag' if is_extended_real(I*t, assumptions) else None)
            return sift(Add.make_args(expr), real_imag)

        lhs_ri = split_real_imag(lhs)
        if not lhs_ri[None]:
            rhs_ri = split_real_imag(rhs)
            if not rhs_ri[None]:
                eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions)
                eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions)
                return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))

        from sympy.functions.elementary.complexes import arg
        # Compare e.g. zoo with 1+I*oo by comparing args
        arglhs = arg(lhs)
        argrhs = arg(rhs)
        # Guard against Eq(nan, nan) -> False
        if not (arglhs == S.NaN and argrhs == S.NaN):
            return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))

    if all(isinstance(i, Expr) for i in (lhs, rhs)):
        # see if the difference evaluates
        dif = lhs - rhs
        _dif = AssumptionsWrapper(dif, assumptions)
        z = _dif.is_zero
        if z is not None:
            if z is False and _dif.is_commutative:  # issue 10728
                return False
            if z:
                return True

        # is_zero cannot help decide integer/rational with Float
        c, t = dif.as_coeff_Add()
        if c.is_Float:
            if int_valued(c):
                if t.is_integer is False:
                    return False
            elif t.is_rational is False:
                return False

        n2 = _n2(lhs, rhs)
        if n2 is not None:
            return _sympify(n2 == 0)

        # see if the ratio evaluates
        n, d = dif.as_numer_denom()
        rv = None
        _n = AssumptionsWrapper(n, assumptions)
        _d = AssumptionsWrapper(d, assumptions)
        if _n.is_zero:
            rv = _d.is_nonzero
        elif _n.is_finite:
            if _d.is_infinite:
                rv = True
            elif _n.is_zero is False:
                rv = _d.is_infinite
                if rv is None:
                    # if the condition that makes the denominator
                    # infinite does not make the original expression
                    # True then False can be returned
                    from sympy.simplify.simplify import clear_coefficients
                    l, r = clear_coefficients(d, S.Infinity)
                    args = [_.subs(l, r) for _ in (lhs, rhs)]
                    if args != [lhs, rhs]:
                        rv = fuzzy_bool(is_eq(*args, assumptions))
                        if rv is True:
                            rv = None
        elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
            # (inf or nan)/x != 0
            rv = False
        if rv is not None:
            return rv