File size: 25,082 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
from __future__ import annotations
from operator import attrgetter
from collections import defaultdict

from sympy.utilities.exceptions import sympy_deprecation_warning

from .sympify import _sympify as _sympify_, sympify
from .basic import Basic
from .cache import cacheit
from .sorting import ordered
from .logic import fuzzy_and
from .parameters import global_parameters
from sympy.utilities.iterables import sift
from sympy.multipledispatch.dispatcher import (Dispatcher,
    ambiguity_register_error_ignore_dup,
    str_signature, RaiseNotImplementedError)


class AssocOp(Basic):
    """ Associative operations, can separate noncommutative and
    commutative parts.

    (a op b) op c == a op (b op c) == a op b op c.

    Base class for Add and Mul.

    This is an abstract base class, concrete derived classes must define
    the attribute `identity`.

    .. deprecated:: 1.7

       Using arguments that aren't subclasses of :class:`~.Expr` in core
       operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
       deprecated. See :ref:`non-expr-args-deprecated` for details.

    Parameters
    ==========

    *args :
        Arguments which are operated

    evaluate : bool, optional
        Evaluate the operation. If not passed, refer to ``global_parameters.evaluate``.
    """

    # for performance reason, we don't let is_commutative go to assumptions,
    # and keep it right here
    __slots__: tuple[str, ...] = ('is_commutative',)

    _args_type: type[Basic] | None = None

    @cacheit
    def __new__(cls, *args, evaluate=None, _sympify=True):
        # Allow faster processing by passing ``_sympify=False``, if all arguments
        # are already sympified.
        if _sympify:
            args = list(map(_sympify_, args))

        # Disallow non-Expr args in Add/Mul
        typ = cls._args_type
        if typ is not None:
            from .relational import Relational
            if any(isinstance(arg, Relational) for arg in args):
                raise TypeError("Relational cannot be used in %s" % cls.__name__)

            # This should raise TypeError once deprecation period is over:
            for arg in args:
                if not isinstance(arg, typ):
                    sympy_deprecation_warning(
                        f"""

Using non-Expr arguments in {cls.__name__} is deprecated (in this case, one of
the arguments has type {type(arg).__name__!r}).

If you really did intend to use a multiplication or addition operation with
this object, use the * or + operator instead.

                        """,
                        deprecated_since_version="1.7",
                        active_deprecations_target="non-expr-args-deprecated",
                        stacklevel=4,
                    )

        if evaluate is None:
            evaluate = global_parameters.evaluate
        if not evaluate:
            obj = cls._from_args(args)
            obj = cls._exec_constructor_postprocessors(obj)
            return obj

        args = [a for a in args if a is not cls.identity]

        if len(args) == 0:
            return cls.identity
        if len(args) == 1:
            return args[0]

        c_part, nc_part, order_symbols = cls.flatten(args)
        is_commutative = not nc_part
        obj = cls._from_args(c_part + nc_part, is_commutative)
        obj = cls._exec_constructor_postprocessors(obj)

        if order_symbols is not None:
            from sympy.series.order import Order
            return Order(obj, *order_symbols)
        return obj

    @classmethod
    def _from_args(cls, args, is_commutative=None):
        """Create new instance with already-processed args.
        If the args are not in canonical order, then a non-canonical
        result will be returned, so use with caution. The order of
        args may change if the sign of the args is changed."""
        if len(args) == 0:
            return cls.identity
        elif len(args) == 1:
            return args[0]

        obj = super().__new__(cls, *args)
        if is_commutative is None:
            is_commutative = fuzzy_and(a.is_commutative for a in args)
        obj.is_commutative = is_commutative
        return obj

    def _new_rawargs(self, *args, reeval=True, **kwargs):
        """Create new instance of own class with args exactly as provided by
        caller but returning the self class identity if args is empty.

        Examples
        ========

           This is handy when we want to optimize things, e.g.

               >>> from sympy import Mul, S
               >>> from sympy.abc import x, y
               >>> e = Mul(3, x, y)
               >>> e.args
               (3, x, y)
               >>> Mul(*e.args[1:])
               x*y
               >>> e._new_rawargs(*e.args[1:])  # the same as above, but faster
               x*y

           Note: use this with caution. There is no checking of arguments at
           all. This is best used when you are rebuilding an Add or Mul after
           simply removing one or more args. If, for example, modifications,
           result in extra 1s being inserted they will show up in the result:

               >>> m = (x*y)._new_rawargs(S.One, x); m
               1*x
               >>> m == x
               False
               >>> m.is_Mul
               True

           Another issue to be aware of is that the commutativity of the result
           is based on the commutativity of self. If you are rebuilding the
           terms that came from a commutative object then there will be no
           problem, but if self was non-commutative then what you are
           rebuilding may now be commutative.

           Although this routine tries to do as little as possible with the
           input, getting the commutativity right is important, so this level
           of safety is enforced: commutativity will always be recomputed if
           self is non-commutative and kwarg `reeval=False` has not been
           passed.
        """
        if reeval and self.is_commutative is False:
            is_commutative = None
        else:
            is_commutative = self.is_commutative
        return self._from_args(args, is_commutative)

    @classmethod
    def flatten(cls, seq):
        """Return seq so that none of the elements are of type `cls`. This is
        the vanilla routine that will be used if a class derived from AssocOp
        does not define its own flatten routine."""
        # apply associativity, no commutativity property is used
        new_seq = []
        while seq:
            o = seq.pop()
            if o.__class__ is cls:  # classes must match exactly
                seq.extend(o.args)
            else:
                new_seq.append(o)
        new_seq.reverse()

        # c_part, nc_part, order_symbols
        return [], new_seq, None

    def _matches_commutative(self, expr, repl_dict=None, old=False):
        """
        Matches Add/Mul "pattern" to an expression "expr".

        repl_dict ... a dictionary of (wild: expression) pairs, that get
                      returned with the results

        This function is the main workhorse for Add/Mul.

        Examples
        ========

        >>> from sympy import symbols, Wild, sin
        >>> a = Wild("a")
        >>> b = Wild("b")
        >>> c = Wild("c")
        >>> x, y, z = symbols("x y z")
        >>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
        {a_: x, b_: y, c_: z}

        In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
        the expression.

        The repl_dict contains parts that were already matched. For example
        here:

        >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
        {a_: x, b_: y, c_: z}

        the only function of the repl_dict is to return it in the
        result, e.g. if you omit it:

        >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
        {b_: y, c_: z}

        the "a: x" is not returned in the result, but otherwise it is
        equivalent.

        """
        from .function import _coeff_isneg
        # make sure expr is Expr if pattern is Expr
        from .expr import Expr
        if isinstance(self, Expr) and not isinstance(expr, Expr):
            return None

        if repl_dict is None:
            repl_dict = {}

        # handle simple patterns
        if self == expr:
            return repl_dict

        d = self._matches_simple(expr, repl_dict)
        if d is not None:
            return d

        # eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
        from .function import WildFunction
        from .symbol import Wild
        wild_part, exact_part = sift(self.args, lambda p:
            p.has(Wild, WildFunction) and not expr.has(p),
            binary=True)
        if not exact_part:
            wild_part = list(ordered(wild_part))
            if self.is_Add:
                # in addition to normal ordered keys, impose
                # sorting on Muls with leading Number to put
                # them in order
                wild_part = sorted(wild_part, key=lambda x:
                    x.args[0] if x.is_Mul and x.args[0].is_Number else
                    0)
        else:
            exact = self._new_rawargs(*exact_part)
            free = expr.free_symbols
            if free and (exact.free_symbols - free):
                # there are symbols in the exact part that are not
                # in the expr; but if there are no free symbols, let
                # the matching continue
                return None
            newexpr = self._combine_inverse(expr, exact)
            if not old and (expr.is_Add or expr.is_Mul):
                check = newexpr
                if _coeff_isneg(check):
                    check = -check
                if check.count_ops() > expr.count_ops():
                    return None
            newpattern = self._new_rawargs(*wild_part)
            return newpattern.matches(newexpr, repl_dict)

        # now to real work ;)
        i = 0
        saw = set()
        while expr not in saw:
            saw.add(expr)
            args = tuple(ordered(self.make_args(expr)))
            if self.is_Add and expr.is_Add:
                # in addition to normal ordered keys, impose
                # sorting on Muls with leading Number to put
                # them in order
                args = tuple(sorted(args, key=lambda x:
                    x.args[0] if x.is_Mul and x.args[0].is_Number else
                    0))
            expr_list = (self.identity,) + args
            for last_op in reversed(expr_list):
                for w in reversed(wild_part):
                    d1 = w.matches(last_op, repl_dict)
                    if d1 is not None:
                        d2 = self.xreplace(d1).matches(expr, d1)
                        if d2 is not None:
                            return d2

            if i == 0:
                if self.is_Mul:
                    # make e**i look like Mul
                    if expr.is_Pow and expr.exp.is_Integer:
                        from .mul import Mul
                        if expr.exp > 0:
                            expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
                        else:
                            expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
                        i += 1
                        continue

                elif self.is_Add:
                    # make i*e look like Add
                    c, e = expr.as_coeff_Mul()
                    if abs(c) > 1:
                        from .add import Add
                        if c > 0:
                            expr = Add(*[e, (c - 1)*e], evaluate=False)
                        else:
                            expr = Add(*[-e, (c + 1)*e], evaluate=False)
                        i += 1
                        continue

                    # try collection on non-Wild symbols
                    from sympy.simplify.radsimp import collect
                    was = expr
                    did = set()
                    for w in reversed(wild_part):
                        c, w = w.as_coeff_mul(Wild)
                        free = c.free_symbols - did
                        if free:
                            did.update(free)
                            expr = collect(expr, free)
                    if expr != was:
                        i += 0
                        continue

                break  # if we didn't continue, there is nothing more to do

        return

    def _has_matcher(self):
        """Helper for .has() that checks for containment of
        subexpressions within an expr by using sets of args
        of similar nodes, e.g. x + 1 in x + y + 1 checks
        to see that {x, 1} & {x, y, 1} == {x, 1}
        """
        def _ncsplit(expr):
            # this is not the same as args_cnc because here
            # we don't assume expr is a Mul -- hence deal with args --
            # and always return a set.
            cpart, ncpart = sift(expr.args,
                lambda arg: arg.is_commutative is True, binary=True)
            return set(cpart), ncpart

        c, nc = _ncsplit(self)
        cls = self.__class__

        def is_in(expr):
            if isinstance(expr, cls):
                if expr == self:
                    return True
                _c, _nc = _ncsplit(expr)
                if (c & _c) == c:
                    if not nc:
                        return True
                    elif len(nc) <= len(_nc):
                        for i in range(len(_nc) - len(nc) + 1):
                            if _nc[i:i + len(nc)] == nc:
                                return True
            return False
        return is_in

    def _eval_evalf(self, prec):
        """
        Evaluate the parts of self that are numbers; if the whole thing
        was a number with no functions it would have been evaluated, but
        it wasn't so we must judiciously extract the numbers and reconstruct
        the object. This is *not* simply replacing numbers with evaluated
        numbers. Numbers should be handled in the largest pure-number
        expression as possible. So the code below separates ``self`` into
        number and non-number parts and evaluates the number parts and
        walks the args of the non-number part recursively (doing the same
        thing).
        """
        from .add import Add
        from .mul import Mul
        from .symbol import Symbol
        from .function import AppliedUndef
        if isinstance(self, (Mul, Add)):
            x, tail = self.as_independent(Symbol, AppliedUndef)
            # if x is an AssocOp Function then the _evalf below will
            # call _eval_evalf (here) so we must break the recursion
            if not (tail is self.identity or
                    isinstance(x, AssocOp) and x.is_Function or
                    x is self.identity and isinstance(tail, AssocOp)):
                # here, we have a number so we just call to _evalf with prec;
                # prec is not the same as n, it is the binary precision so
                # that's why we don't call to evalf.
                x = x._evalf(prec) if x is not self.identity else self.identity
                args = []
                tail_args = tuple(self.func.make_args(tail))
                for a in tail_args:
                    # here we call to _eval_evalf since we don't know what we
                    # are dealing with and all other _eval_evalf routines should
                    # be doing the same thing (i.e. taking binary prec and
                    # finding the evalf-able args)
                    newa = a._eval_evalf(prec)
                    if newa is None:
                        args.append(a)
                    else:
                        args.append(newa)
                return self.func(x, *args)

        # this is the same as above, but there were no pure-number args to
        # deal with
        args = []
        for a in self.args:
            newa = a._eval_evalf(prec)
            if newa is None:
                args.append(a)
            else:
                args.append(newa)
        return self.func(*args)

    @classmethod
    def make_args(cls, expr):
        """
        Return a sequence of elements `args` such that cls(*args) == expr

        Examples
        ========

        >>> from sympy import Symbol, Mul, Add
        >>> x, y = map(Symbol, 'xy')

        >>> Mul.make_args(x*y)
        (x, y)
        >>> Add.make_args(x*y)
        (x*y,)
        >>> set(Add.make_args(x*y + y)) == set([y, x*y])
        True

        """
        if isinstance(expr, cls):
            return expr.args
        else:
            return (sympify(expr),)

    def doit(self, **hints):
        if hints.get('deep', True):
            terms = [term.doit(**hints) for term in self.args]
        else:
            terms = self.args
        return self.func(*terms, evaluate=True)

class ShortCircuit(Exception):
    pass


class LatticeOp(AssocOp):
    """
    Join/meet operations of an algebraic lattice[1].

    Explanation
    ===========

    These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
    commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
    Common examples are AND, OR, Union, Intersection, max or min. They have an
    identity element (op(identity, a) = a) and an absorbing element
    conventionally called zero (op(zero, a) = zero).

    This is an abstract base class, concrete derived classes must declare
    attributes zero and identity. All defining properties are then respected.

    Examples
    ========

    >>> from sympy import Integer
    >>> from sympy.core.operations import LatticeOp
    >>> class my_join(LatticeOp):
    ...     zero = Integer(0)
    ...     identity = Integer(1)
    >>> my_join(2, 3) == my_join(3, 2)
    True
    >>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
    True
    >>> my_join(0, 1, 4, 2, 3, 4)
    0
    >>> my_join(1, 2)
    2

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lattice_%28order%29
    """

    is_commutative = True

    def __new__(cls, *args, **options):
        args = (_sympify_(arg) for arg in args)

        try:
            # /!\ args is a generator and _new_args_filter
            # must be careful to handle as such; this
            # is done so short-circuiting can be done
            # without having to sympify all values
            _args = frozenset(cls._new_args_filter(args))
        except ShortCircuit:
            return sympify(cls.zero)
        if not _args:
            return sympify(cls.identity)
        elif len(_args) == 1:
            return set(_args).pop()
        else:
            # XXX in almost every other case for __new__, *_args is
            # passed along, but the expectation here is for _args
            obj = super(AssocOp, cls).__new__(cls, *ordered(_args))
            obj._argset = _args
            return obj

    @classmethod
    def _new_args_filter(cls, arg_sequence, call_cls=None):
        """Generator filtering args"""
        ncls = call_cls or cls
        for arg in arg_sequence:
            if arg == ncls.zero:
                raise ShortCircuit(arg)
            elif arg == ncls.identity:
                continue
            elif arg.func == ncls:
                yield from arg.args
            else:
                yield arg

    @classmethod
    def make_args(cls, expr):
        """
        Return a set of args such that cls(*arg_set) == expr.
        """
        if isinstance(expr, cls):
            return expr._argset
        else:
            return frozenset([sympify(expr)])


class AssocOpDispatcher:
    """
    Handler dispatcher for associative operators

    .. notes::
       This approach is experimental, and can be replaced or deleted in the future.
       See https://github.com/sympy/sympy/pull/19463.

    Explanation
    ===========

    If arguments of different types are passed, the classes which handle the operation for each type
    are collected. Then, a class which performs the operation is selected by recursive binary dispatching.
    Dispatching relation can be registered by ``register_handlerclass`` method.

    Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to
    different handler classes. All logic dealing with the order of arguments must be implemented
    in the handler class.

    Examples
    ========

    >>> from sympy import Add, Expr, Symbol
    >>> from sympy.core.add import add

    >>> class NewExpr(Expr):
    ...     @property
    ...     def _add_handler(self):
    ...         return NewAdd
    >>> class NewAdd(NewExpr, Add):
    ...     pass
    >>> add.register_handlerclass((Add, NewAdd), NewAdd)

    >>> a, b = Symbol('a'), NewExpr()
    >>> add(a, b) == NewAdd(a, b)
    True

    """
    def __init__(self, name, doc=None):
        self.name = name
        self.doc = doc
        self.handlerattr = "_%s_handler" % name
        self._handlergetter = attrgetter(self.handlerattr)
        self._dispatcher = Dispatcher(name)

    def __repr__(self):
        return "<dispatched %s>" % self.name

    def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup):
        """
        Register the handler class for two classes, in both straight and reversed order.

        Paramteters
        ===========

        classes : tuple of two types
            Classes who are compared with each other.

        typ:
            Class which is registered to represent *cls1* and *cls2*.
            Handler method of *self* must be implemented in this class.
        """
        if not len(classes) == 2:
            raise RuntimeError(
                "Only binary dispatch is supported, but got %s types: <%s>." % (
                len(classes), str_signature(classes)
            ))
        if len(set(classes)) == 1:
            raise RuntimeError(
                "Duplicate types <%s> cannot be dispatched." % str_signature(classes)
            )
        self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity)
        self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity)

    @cacheit
    def __call__(self, *args, _sympify=True, **kwargs):
        """
        Parameters
        ==========

        *args :
            Arguments which are operated
        """
        if _sympify:
            args = tuple(map(_sympify_, args))
        handlers = frozenset(map(self._handlergetter, args))

        # no need to sympify again
        return self.dispatch(handlers)(*args, _sympify=False, **kwargs)

    @cacheit
    def dispatch(self, handlers):
        """
        Select the handler class, and return its handler method.
        """

        # Quick exit for the case where all handlers are same
        if len(handlers) == 1:
            h, = handlers
            if not isinstance(h, type):
                raise RuntimeError("Handler {!r} is not a type.".format(h))
            return h

        # Recursively select with registered binary priority
        for i, typ in enumerate(handlers):

            if not isinstance(typ, type):
                raise RuntimeError("Handler {!r} is not a type.".format(typ))

            if i == 0:
                handler = typ
            else:
                prev_handler = handler
                handler = self._dispatcher.dispatch(prev_handler, typ)

                if not isinstance(handler, type):
                    raise RuntimeError(
                        "Dispatcher for {!r} and {!r} must return a type, but got {!r}".format(
                        prev_handler, typ, handler
                    ))

        # return handler class
        return handler

    @property
    def __doc__(self):
        docs = [
            "Multiply dispatched associative operator: %s" % self.name,
            "Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details"
        ]

        if self.doc:
            docs.append(self.doc)

        s = "Registered handler classes\n"
        s += '=' * len(s)
        docs.append(s)

        amb_sigs = []

        typ_sigs = defaultdict(list)
        for sigs in self._dispatcher.ordering[::-1]:
            key = self._dispatcher.funcs[sigs]
            typ_sigs[key].append(sigs)

        for typ, sigs in typ_sigs.items():

            sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)

            if isinstance(typ, RaiseNotImplementedError):
                amb_sigs.append(sigs_str)
                continue

            s = 'Inputs: %s\n' % sigs_str
            s += '-' * len(s) + '\n'
            s += typ.__name__
            docs.append(s)

        if amb_sigs:
            s = "Ambiguous handler classes\n"
            s += '=' * len(s)
            docs.append(s)

            s = '\n'.join(amb_sigs)
            docs.append(s)

        return '\n\n'.join(docs)