File size: 8,434 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from .add import Add
from .exprtools import gcd_terms
from .function import Function
from .kind import NumberKind
from .logic import fuzzy_and, fuzzy_not
from .mul import Mul
from .numbers import equal_valued
from .singleton import S


class Mod(Function):
    """Represents a modulo operation on symbolic expressions.

    Parameters
    ==========

    p : Expr
        Dividend.

    q : Expr
        Divisor.

    Notes
    =====

    The convention used is the same as Python's: the remainder always has the
    same sign as the divisor.

    Many objects can be evaluated modulo ``n`` much faster than they can be
    evaluated directly (or at all).  For this, ``evaluate=False`` is
    necessary to prevent eager evaluation:

    >>> from sympy import binomial, factorial, Mod, Pow
    >>> Mod(Pow(2, 10**16, evaluate=False), 97)
    61
    >>> Mod(factorial(10**9, evaluate=False), 10**9 + 9)
    712524808
    >>> Mod(binomial(10**18, 10**12, evaluate=False), (10**5 + 3)**2)
    3744312326

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> x**2 % y
    Mod(x**2, y)
    >>> _.subs({x: 5, y: 6})
    1

    """

    kind = NumberKind

    @classmethod
    def eval(cls, p, q):
        def number_eval(p, q):
            """Try to return p % q if both are numbers or +/-p is known
            to be less than or equal q.
            """

            if q.is_zero:
                raise ZeroDivisionError("Modulo by zero")
            if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
                return S.NaN
            if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
                return S.Zero

            if q.is_Number:
                if p.is_Number:
                    return p%q
                if q == 2:
                    if p.is_even:
                        return S.Zero
                    elif p.is_odd:
                        return S.One

            if hasattr(p, '_eval_Mod'):
                rv = getattr(p, '_eval_Mod')(q)
                if rv is not None:
                    return rv

            # by ratio
            r = p/q
            if r.is_integer:
                return S.Zero
            try:
                d = int(r)
            except TypeError:
                pass
            else:
                if isinstance(d, int):
                    rv = p - d*q
                    if (rv*q < 0) == True:
                        rv += q
                    return rv

            # by difference
            # -2|q| < p < 2|q|
            d = abs(p)
            for _ in range(2):
                d -= abs(q)
                if d.is_negative:
                    if q.is_positive:
                        if p.is_positive:
                            return d + q
                        elif p.is_negative:
                            return -d
                    elif q.is_negative:
                        if p.is_positive:
                            return d
                        elif p.is_negative:
                            return -d + q
                    break

        rv = number_eval(p, q)
        if rv is not None:
            return rv

        # denest
        if isinstance(p, cls):
            qinner = p.args[1]
            if qinner % q == 0:
                return cls(p.args[0], q)
            elif (qinner*(q - qinner)).is_nonnegative:
                # |qinner| < |q| and have same sign
                return p
        elif isinstance(-p, cls):
            qinner = (-p).args[1]
            if qinner % q == 0:
                return cls(-(-p).args[0], q)
            elif (qinner*(q + qinner)).is_nonpositive:
                # |qinner| < |q| and have different sign
                return p
        elif isinstance(p, Add):
            # separating into modulus and non modulus
            both_l = non_mod_l, mod_l = [], []
            for arg in p.args:
                both_l[isinstance(arg, cls)].append(arg)
            # if q same for all
            if mod_l and all(inner.args[1] == q for inner in mod_l):
                net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l])
                return cls(net, q)

        elif isinstance(p, Mul):
            # separating into modulus and non modulus
            both_l = non_mod_l, mod_l = [], []
            for arg in p.args:
                both_l[isinstance(arg, cls)].append(arg)

            if mod_l and all(inner.args[1] == q for inner in mod_l) and all(t.is_integer for t in p.args) and q.is_integer:
                # finding distributive term
                non_mod_l = [cls(x, q) for x in non_mod_l]
                mod = []
                non_mod = []
                for j in non_mod_l:
                    if isinstance(j, cls):
                        mod.append(j.args[0])
                    else:
                        non_mod.append(j)
                prod_mod = Mul(*mod)
                prod_non_mod = Mul(*non_mod)
                prod_mod1 = Mul(*[i.args[0] for i in mod_l])
                net = prod_mod1*prod_mod
                return prod_non_mod*cls(net, q)

            if q.is_Integer and q is not S.One:
                if all(t.is_integer for t in p.args):
                    non_mod_l = [i % q if i.is_Integer else i for i in p.args]
                    if any(iq is S.Zero for iq in non_mod_l):
                        return S.Zero

            p = Mul(*(non_mod_l + mod_l))

        # XXX other possibilities?

        from sympy.polys.polyerrors import PolynomialError
        from sympy.polys.polytools import gcd

        # extract gcd; any further simplification should be done by the user
        try:
            G = gcd(p, q)
            if not equal_valued(G, 1):
                p, q = [gcd_terms(i/G, clear=False, fraction=False)
                        for i in (p, q)]
        except PolynomialError:  # issue 21373
            G = S.One
        pwas, qwas = p, q

        # simplify terms
        # (x + y + 2) % x -> Mod(y + 2, x)
        if p.is_Add:
            args = []
            for i in p.args:
                a = cls(i, q)
                if a.count(cls) > i.count(cls):
                    args.append(i)
                else:
                    args.append(a)
            if args != list(p.args):
                p = Add(*args)

        else:
            # handle coefficients if they are not Rational
            # since those are not handled by factor_terms
            # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
            cp, p = p.as_coeff_Mul()
            cq, q = q.as_coeff_Mul()
            ok = False
            if not cp.is_Rational or not cq.is_Rational:
                r = cp % cq
                if equal_valued(r, 0):
                    G *= cq
                    p *= int(cp/cq)
                    ok = True
            if not ok:
                p = cp*p
                q = cq*q

        # simple -1 extraction
        if p.could_extract_minus_sign() and q.could_extract_minus_sign():
            G, p, q = [-i for i in (G, p, q)]

        # check again to see if p and q can now be handled as numbers
        rv = number_eval(p, q)
        if rv is not None:
            return rv*G

        # put 1.0 from G on inside
        if G.is_Float and equal_valued(G, 1):
            p *= G
            return cls(p, q, evaluate=False)
        elif G.is_Mul and G.args[0].is_Float and equal_valued(G.args[0], 1):
            p = G.args[0]*p
            G = Mul._from_args(G.args[1:])
        return G*cls(p, q, evaluate=(p, q) != (pwas, qwas))

    def _eval_is_integer(self):
        p, q = self.args
        if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]):
            return True

    def _eval_is_nonnegative(self):
        if self.args[1].is_positive:
            return True

    def _eval_is_nonpositive(self):
        if self.args[1].is_negative:
            return True

    def _eval_rewrite_as_floor(self, a, b, **kwargs):
        from sympy.functions.elementary.integers import floor
        return a - b*floor(a/b)

    def _eval_as_leading_term(self, x, logx=None, cdir=0):
        from sympy.functions.elementary.integers import floor
        return self.rewrite(floor)._eval_as_leading_term(x, logx=logx, cdir=cdir)

    def _eval_nseries(self, x, n, logx, cdir=0):
        from sympy.functions.elementary.integers import floor
        return self.rewrite(floor)._eval_nseries(x, n, logx=logx, cdir=cdir)