File size: 14,272 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
The routines here were removed from numbers.py, power.py,
digits.py and factor_.py so they could be imported into core
without raising circular import errors.

Although the name 'intfunc' was chosen to represent functions that
work with integers, it can also be thought of as containing
internal/core functions that are needed by the classes of the core.
"""

import math
import sys
from functools import lru_cache

from .sympify import sympify
from .singleton import S
from sympy.external.gmpy import (gcd as number_gcd, lcm as number_lcm, sqrt,
                                 iroot, bit_scan1, gcdext)
from sympy.utilities.misc import as_int, filldedent


def num_digits(n, base=10):
    """Return the number of digits needed to express n in give base.

    Examples
    ========

    >>> from sympy.core.intfunc import num_digits
    >>> num_digits(10)
    2
    >>> num_digits(10, 2)  # 1010 -> 4 digits
    4
    >>> num_digits(-100, 16)  # -64 -> 2 digits
    2


    Parameters
    ==========

    n: integer
        The number whose digits are counted.

    b: integer
        The base in which digits are computed.

    See Also
    ========
    sympy.ntheory.digits.digits, sympy.ntheory.digits.count_digits
    """
    if base < 0:
        raise ValueError('base must be int greater than 1')
    if not n:
        return 1
    e, t = integer_log(abs(n), base)
    return 1 + e


def integer_log(n, b):
    r"""
    Returns ``(e, bool)`` where e is the largest nonnegative integer
    such that :math:`|n| \geq |b^e|` and ``bool`` is True if $n = b^e$.

    Examples
    ========

    >>> from sympy import integer_log
    >>> integer_log(125, 5)
    (3, True)
    >>> integer_log(17, 9)
    (1, False)

    If the base is positive and the number negative the
    return value will always be the same except for 2:

    >>> integer_log(-4, 2)
    (2, False)
    >>> integer_log(-16, 4)
    (0, False)

    When the base is negative, the returned value
    will only be True if the parity of the exponent is
    correct for the sign of the base:

    >>> integer_log(4, -2)
    (2, True)
    >>> integer_log(8, -2)
    (3, False)
    >>> integer_log(-8, -2)
    (3, True)
    >>> integer_log(-4, -2)
    (2, False)

    See Also
    ========
    integer_nthroot
    sympy.ntheory.primetest.is_square
    sympy.ntheory.factor_.multiplicity
    sympy.ntheory.factor_.perfect_power
    """
    n = as_int(n)
    b = as_int(b)

    if b < 0:
        e, t = integer_log(abs(n), -b)
        # (-2)**3 == -8
        # (-2)**2 = 4
        t = t and e % 2 == (n < 0)
        return e, t
    if b <= 1:
        raise ValueError('base must be 2 or more')
    if n < 0:
        if b != 2:
            return 0, False
        e, t = integer_log(-n, b)
        return e, False
    if n == 0:
        raise ValueError('n cannot be 0')

    if n < b:
        return 0, n == 1
    if b == 2:
        e = n.bit_length() - 1
        return e, trailing(n) == e
    t = trailing(b)
    if 2**t == b:
        e = int(n.bit_length() - 1)//t
        n_ = 1 << (t*e)
        return e, n_ == n

    d = math.floor(math.log10(n) / math.log10(b))
    n_ = b ** d
    while n_ <= n:  # this will iterate 0, 1 or 2 times
        d += 1
        n_ *= b
    return d - (n_ > n), (n_ == n or n_//b == n)


def trailing(n):
    """Count the number of trailing zero digits in the binary
    representation of n, i.e. determine the largest power of 2
    that divides n.

    Examples
    ========

    >>> from sympy import trailing
    >>> trailing(128)
    7
    >>> trailing(63)
    0

    See Also
    ========
    sympy.ntheory.factor_.multiplicity

    """
    if not n:
        return 0
    return bit_scan1(int(n))


@lru_cache(1024)
def igcd(*args):
    """Computes nonnegative integer greatest common divisor.

    Explanation
    ===========

    The algorithm is based on the well known Euclid's algorithm [1]_. To
    improve speed, ``igcd()`` has its own caching mechanism.
    If you do not need the cache mechanism, using ``sympy.external.gmpy.gcd``.

    Examples
    ========

    >>> from sympy import igcd
    >>> igcd(2, 4)
    2
    >>> igcd(5, 10, 15)
    5

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Euclidean_algorithm

    """
    if len(args) < 2:
        raise TypeError("igcd() takes at least 2 arguments (%s given)" % len(args))
    return int(number_gcd(*map(as_int, args)))


igcd2 = math.gcd


def igcd_lehmer(a, b):
    r"""Computes greatest common divisor of two integers.

    Explanation
    ===========

    Euclid's algorithm for the computation of the greatest
    common divisor ``gcd(a, b)``  of two (positive) integers
    $a$ and $b$ is based on the division identity
    $$ a = q \times b + r$$,
    where the quotient  $q$  and the remainder  $r$  are integers
    and  $0 \le r < b$. Then each common divisor of  $a$  and  $b$
    divides  $r$, and it follows that  ``gcd(a, b) == gcd(b, r)``.
    The algorithm works by constructing the sequence
    r0, r1, r2, ..., where  r0 = a, r1 = b,  and each  rn
    is the remainder from the division of the two preceding
    elements.

    In Python, ``q = a // b``  and  ``r = a % b``  are obtained by the
    floor division and the remainder operations, respectively.
    These are the most expensive arithmetic operations, especially
    for large  a  and  b.

    Lehmer's algorithm [1]_ is based on the observation that the quotients
    ``qn = r(n-1) // rn``  are in general small integers even
    when  a  and  b  are very large. Hence the quotients can be
    usually determined from a relatively small number of most
    significant bits.

    The efficiency of the algorithm is further enhanced by not
    computing each long remainder in Euclid's sequence. The remainders
    are linear combinations of  a  and  b  with integer coefficients
    derived from the quotients. The coefficients can be computed
    as far as the quotients can be determined from the chosen
    most significant parts of  a  and  b. Only then a new pair of
    consecutive remainders is computed and the algorithm starts
    anew with this pair.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm

    """
    a, b = abs(as_int(a)), abs(as_int(b))
    if a < b:
        a, b = b, a

    # The algorithm works by using one or two digit division
    # whenever possible. The outer loop will replace the
    # pair (a, b) with a pair of shorter consecutive elements
    # of the Euclidean gcd sequence until a and b
    # fit into two Python (long) int digits.
    nbits = 2 * sys.int_info.bits_per_digit

    while a.bit_length() > nbits and b != 0:
        # Quotients are mostly small integers that can
        # be determined from most significant bits.
        n = a.bit_length() - nbits
        x, y = int(a >> n), int(b >> n)  # most significant bits

        # Elements of the Euclidean gcd sequence are linear
        # combinations of a and b with integer coefficients.
        # Compute the coefficients of consecutive pairs
        #     a' = A*a + B*b, b' = C*a + D*b
        # using small integer arithmetic as far as possible.
        A, B, C, D = 1, 0, 0, 1  # initial values

        while True:
            # The coefficients alternate in sign while looping.
            # The inner loop combines two steps to keep track
            # of the signs.

            # At this point we have
            #   A > 0, B <= 0, C <= 0, D > 0,
            #   x' = x + B <= x < x" = x + A,
            #   y' = y + C <= y < y" = y + D,
            # and
            #   x'*N <= a' < x"*N, y'*N <= b' < y"*N,
            # where N = 2**n.

            # Now, if y' > 0, and x"//y' and x'//y" agree,
            # then their common value is equal to  q = a'//b'.
            # In addition,
            #   x'%y" = x' - q*y" < x" - q*y' = x"%y',
            # and
            #   (x'%y")*N < a'%b' < (x"%y')*N.

            # On the other hand, we also have  x//y == q,
            # and therefore
            #   x'%y" = x + B - q*(y + D) = x%y + B',
            #   x"%y' = x + A - q*(y + C) = x%y + A',
            # where
            #    B' = B - q*D < 0, A' = A - q*C > 0.

            if y + C <= 0:
                break
            q = (x + A) // (y + C)

            # Now  x'//y" <= q, and equality holds if
            #   x' - q*y" = (x - q*y) + (B - q*D) >= 0.
            # This is a minor optimization to avoid division.
            x_qy, B_qD = x - q * y, B - q * D
            if x_qy + B_qD < 0:
                break

            # Next step in the Euclidean sequence.
            x, y = y, x_qy
            A, B, C, D = C, D, A - q * C, B_qD

            # At this point the signs of the coefficients
            # change and their roles are interchanged.
            #   A <= 0, B > 0, C > 0, D < 0,
            #   x' = x + A <= x < x" = x + B,
            #   y' = y + D < y < y" = y + C.

            if y + D <= 0:
                break
            q = (x + B) // (y + D)
            x_qy, A_qC = x - q * y, A - q * C
            if x_qy + A_qC < 0:
                break

            x, y = y, x_qy
            A, B, C, D = C, D, A_qC, B - q * D
            # Now the conditions on top of the loop
            # are again satisfied.
            #   A > 0, B < 0, C < 0, D > 0.

        if B == 0:
            # This can only happen when y == 0 in the beginning
            # and the inner loop does nothing.
            # Long division is forced.
            a, b = b, a % b
            continue

        # Compute new long arguments using the coefficients.
        a, b = A * a + B * b, C * a + D * b

    # Small divisors. Finish with the standard algorithm.
    while b:
        a, b = b, a % b

    return a


def ilcm(*args):
    """Computes integer least common multiple.

    Examples
    ========

    >>> from sympy import ilcm
    >>> ilcm(5, 10)
    10
    >>> ilcm(7, 3)
    21
    >>> ilcm(5, 10, 15)
    30

    """
    if len(args) < 2:
        raise TypeError("ilcm() takes at least 2 arguments (%s given)" % len(args))
    return int(number_lcm(*map(as_int, args)))


def igcdex(a, b):
    """Returns x, y, g such that g = x*a + y*b = gcd(a, b).

    Examples
    ========

    >>> from sympy.core.intfunc import igcdex
    >>> igcdex(2, 3)
    (-1, 1, 1)
    >>> igcdex(10, 12)
    (-1, 1, 2)

    >>> x, y, g = igcdex(100, 2004)
    >>> x, y, g
    (-20, 1, 4)
    >>> x*100 + y*2004
    4

    """
    if (not a) and (not b):
        return (0, 1, 0)
    g, x, y = gcdext(int(a), int(b))
    return x, y, g


def mod_inverse(a, m):
    r"""
    Return the number $c$ such that, $a \times c = 1 \pmod{m}$
    where $c$ has the same sign as $m$. If no such value exists,
    a ValueError is raised.

    Examples
    ========

    >>> from sympy import mod_inverse, S

    Suppose we wish to find multiplicative inverse $x$ of
    3 modulo 11. This is the same as finding $x$ such
    that $3x = 1 \pmod{11}$. One value of x that satisfies
    this congruence is 4. Because $3 \times 4 = 12$ and $12 = 1 \pmod{11}$.
    This is the value returned by ``mod_inverse``:

    >>> mod_inverse(3, 11)
    4
    >>> mod_inverse(-3, 11)
    7

    When there is a common factor between the numerators of
    `a` and `m` the inverse does not exist:

    >>> mod_inverse(2, 4)
    Traceback (most recent call last):
    ...
    ValueError: inverse of 2 mod 4 does not exist

    >>> mod_inverse(S(2)/7, S(5)/2)
    7/2

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
    .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
    """
    c = None
    try:
        a, m = as_int(a), as_int(m)
        if m != 1 and m != -1:
            x, _, g = igcdex(a, m)
            if g == 1:
                c = x % m
    except ValueError:
        a, m = sympify(a), sympify(m)
        if not (a.is_number and m.is_number):
            raise TypeError(
                filldedent(
                    """
                Expected numbers for arguments; symbolic `mod_inverse`
                is not implemented
                but symbolic expressions can be handled with the
                similar function,
                sympy.polys.polytools.invert"""
                )
            )
        big = m > 1
        if big not in (S.true, S.false):
            raise ValueError("m > 1 did not evaluate; try to simplify %s" % m)
        elif big:
            c = 1 / a
    if c is None:
        raise ValueError("inverse of %s (mod %s) does not exist" % (a, m))
    return c


def isqrt(n):
    r""" Return the largest integer less than or equal to `\sqrt{n}`.

    Parameters
    ==========

    n : non-negative integer

    Returns
    =======

    int : `\left\lfloor\sqrt{n}\right\rfloor`

    Raises
    ======

    ValueError
        If n is negative.
    TypeError
        If n is of a type that cannot be compared to ``int``.
        Therefore, a TypeError is raised for ``str``, but not for ``float``.

    Examples
    ========

    >>> from sympy.core.intfunc import isqrt
    >>> isqrt(0)
    0
    >>> isqrt(9)
    3
    >>> isqrt(10)
    3
    >>> isqrt("30")
    Traceback (most recent call last):
        ...
    TypeError: '<' not supported between instances of 'str' and 'int'
    >>> from sympy.core.numbers import Rational
    >>> isqrt(Rational(-1, 2))
    Traceback (most recent call last):
        ...
    ValueError: n must be nonnegative

    """
    if n < 0:
        raise ValueError("n must be nonnegative")
    return int(sqrt(int(n)))


def integer_nthroot(y, n):
    """
    Return a tuple containing x = floor(y**(1/n))
    and a boolean indicating whether the result is exact (that is,
    whether x**n == y).

    Examples
    ========

    >>> from sympy import integer_nthroot
    >>> integer_nthroot(16, 2)
    (4, True)
    >>> integer_nthroot(26, 2)
    (5, False)

    To simply determine if a number is a perfect square, the is_square
    function should be used:

    >>> from sympy.ntheory.primetest import is_square
    >>> is_square(26)
    False

    See Also
    ========
    sympy.ntheory.primetest.is_square
    integer_log
    """
    x, b = iroot(as_int(y), as_int(n))
    return int(x), b