Spaces:
Running
Running
File size: 14,272 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
"""
The routines here were removed from numbers.py, power.py,
digits.py and factor_.py so they could be imported into core
without raising circular import errors.
Although the name 'intfunc' was chosen to represent functions that
work with integers, it can also be thought of as containing
internal/core functions that are needed by the classes of the core.
"""
import math
import sys
from functools import lru_cache
from .sympify import sympify
from .singleton import S
from sympy.external.gmpy import (gcd as number_gcd, lcm as number_lcm, sqrt,
iroot, bit_scan1, gcdext)
from sympy.utilities.misc import as_int, filldedent
def num_digits(n, base=10):
"""Return the number of digits needed to express n in give base.
Examples
========
>>> from sympy.core.intfunc import num_digits
>>> num_digits(10)
2
>>> num_digits(10, 2) # 1010 -> 4 digits
4
>>> num_digits(-100, 16) # -64 -> 2 digits
2
Parameters
==========
n: integer
The number whose digits are counted.
b: integer
The base in which digits are computed.
See Also
========
sympy.ntheory.digits.digits, sympy.ntheory.digits.count_digits
"""
if base < 0:
raise ValueError('base must be int greater than 1')
if not n:
return 1
e, t = integer_log(abs(n), base)
return 1 + e
def integer_log(n, b):
r"""
Returns ``(e, bool)`` where e is the largest nonnegative integer
such that :math:`|n| \geq |b^e|` and ``bool`` is True if $n = b^e$.
Examples
========
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
If the base is positive and the number negative the
return value will always be the same except for 2:
>>> integer_log(-4, 2)
(2, False)
>>> integer_log(-16, 4)
(0, False)
When the base is negative, the returned value
will only be True if the parity of the exponent is
correct for the sign of the base:
>>> integer_log(4, -2)
(2, True)
>>> integer_log(8, -2)
(3, False)
>>> integer_log(-8, -2)
(3, True)
>>> integer_log(-4, -2)
(2, False)
See Also
========
integer_nthroot
sympy.ntheory.primetest.is_square
sympy.ntheory.factor_.multiplicity
sympy.ntheory.factor_.perfect_power
"""
n = as_int(n)
b = as_int(b)
if b < 0:
e, t = integer_log(abs(n), -b)
# (-2)**3 == -8
# (-2)**2 = 4
t = t and e % 2 == (n < 0)
return e, t
if b <= 1:
raise ValueError('base must be 2 or more')
if n < 0:
if b != 2:
return 0, False
e, t = integer_log(-n, b)
return e, False
if n == 0:
raise ValueError('n cannot be 0')
if n < b:
return 0, n == 1
if b == 2:
e = n.bit_length() - 1
return e, trailing(n) == e
t = trailing(b)
if 2**t == b:
e = int(n.bit_length() - 1)//t
n_ = 1 << (t*e)
return e, n_ == n
d = math.floor(math.log10(n) / math.log10(b))
n_ = b ** d
while n_ <= n: # this will iterate 0, 1 or 2 times
d += 1
n_ *= b
return d - (n_ > n), (n_ == n or n_//b == n)
def trailing(n):
"""Count the number of trailing zero digits in the binary
representation of n, i.e. determine the largest power of 2
that divides n.
Examples
========
>>> from sympy import trailing
>>> trailing(128)
7
>>> trailing(63)
0
See Also
========
sympy.ntheory.factor_.multiplicity
"""
if not n:
return 0
return bit_scan1(int(n))
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
Explanation
===========
The algorithm is based on the well known Euclid's algorithm [1]_. To
improve speed, ``igcd()`` has its own caching mechanism.
If you do not need the cache mechanism, using ``sympy.external.gmpy.gcd``.
Examples
========
>>> from sympy import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
References
==========
.. [1] https://en.wikipedia.org/wiki/Euclidean_algorithm
"""
if len(args) < 2:
raise TypeError("igcd() takes at least 2 arguments (%s given)" % len(args))
return int(number_gcd(*map(as_int, args)))
igcd2 = math.gcd
def igcd_lehmer(a, b):
r"""Computes greatest common divisor of two integers.
Explanation
===========
Euclid's algorithm for the computation of the greatest
common divisor ``gcd(a, b)`` of two (positive) integers
$a$ and $b$ is based on the division identity
$$ a = q \times b + r$$,
where the quotient $q$ and the remainder $r$ are integers
and $0 \le r < b$. Then each common divisor of $a$ and $b$
divides $r$, and it follows that ``gcd(a, b) == gcd(b, r)``.
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, ``q = a // b`` and ``r = a % b`` are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm [1]_ is based on the observation that the quotients
``qn = r(n-1) // rn`` are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2 * sys.int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q * y, B - q * D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q * C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q * y, A - q * C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q * D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A * a + B * b, C * a + D * b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError("ilcm() takes at least 2 arguments (%s given)" % len(args))
return int(number_lcm(*map(as_int, args)))
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
Examples
========
>>> from sympy.core.intfunc import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
g, x, y = gcdext(int(a), int(b))
return x, y, g
def mod_inverse(a, m):
r"""
Return the number $c$ such that, $a \times c = 1 \pmod{m}$
where $c$ has the same sign as $m$. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import mod_inverse, S
Suppose we wish to find multiplicative inverse $x$ of
3 modulo 11. This is the same as finding $x$ such
that $3x = 1 \pmod{11}$. One value of x that satisfies
this congruence is 4. Because $3 \times 4 = 12$ and $12 = 1 \pmod{11}$.
This is the value returned by ``mod_inverse``:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
`a` and `m` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
.. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
.. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, _, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(
filldedent(
"""
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert"""
)
)
big = m > 1
if big not in (S.true, S.false):
raise ValueError("m > 1 did not evaluate; try to simplify %s" % m)
elif big:
c = 1 / a
if c is None:
raise ValueError("inverse of %s (mod %s) does not exist" % (a, m))
return c
def isqrt(n):
r""" Return the largest integer less than or equal to `\sqrt{n}`.
Parameters
==========
n : non-negative integer
Returns
=======
int : `\left\lfloor\sqrt{n}\right\rfloor`
Raises
======
ValueError
If n is negative.
TypeError
If n is of a type that cannot be compared to ``int``.
Therefore, a TypeError is raised for ``str``, but not for ``float``.
Examples
========
>>> from sympy.core.intfunc import isqrt
>>> isqrt(0)
0
>>> isqrt(9)
3
>>> isqrt(10)
3
>>> isqrt("30")
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
>>> from sympy.core.numbers import Rational
>>> isqrt(Rational(-1, 2))
Traceback (most recent call last):
...
ValueError: n must be nonnegative
"""
if n < 0:
raise ValueError("n must be nonnegative")
return int(sqrt(int(n)))
def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
Examples
========
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
To simply determine if a number is a perfect square, the is_square
function should be used:
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
See Also
========
sympy.ntheory.primetest.is_square
integer_log
"""
x, b = iroot(as_int(y), as_int(n))
return int(x), b
|