Spaces:
Running
Running
File size: 19,546 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
r"""This is rule-based deduction system for SymPy
The whole thing is split into two parts
- rules compilation and preparation of tables
- runtime inference
For rule-based inference engines, the classical work is RETE algorithm [1],
[2] Although we are not implementing it in full (or even significantly)
it's still worth a read to understand the underlying ideas.
In short, every rule in a system of rules is one of two forms:
- atom -> ... (alpha rule)
- And(atom1, atom2, ...) -> ... (beta rule)
The major complexity is in efficient beta-rules processing and usually for an
expert system a lot of effort goes into code that operates on beta-rules.
Here we take minimalistic approach to get something usable first.
- (preparation) of alpha- and beta- networks, everything except
- (runtime) FactRules.deduce_all_facts
_____________________________________
( Kirr: I've never thought that doing )
( logic stuff is that difficult... )
-------------------------------------
o ^__^
o (oo)\_______
(__)\ )\/\
||----w |
|| ||
Some references on the topic
----------------------------
[1] https://en.wikipedia.org/wiki/Rete_algorithm
[2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
https://en.wikipedia.org/wiki/Propositional_formula
https://en.wikipedia.org/wiki/Inference_rule
https://en.wikipedia.org/wiki/List_of_rules_of_inference
"""
from collections import defaultdict
from typing import Iterator
from .logic import Logic, And, Or, Not
def _base_fact(atom):
"""Return the literal fact of an atom.
Effectively, this merely strips the Not around a fact.
"""
if isinstance(atom, Not):
return atom.arg
else:
return atom
def _as_pair(atom):
if isinstance(atom, Not):
return (atom.arg, False)
else:
return (atom, True)
# XXX this prepares forward-chaining rules for alpha-network
def transitive_closure(implications):
"""
Computes the transitive closure of a list of implications
Uses Warshall's algorithm, as described at
http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf.
"""
full_implications = set(implications)
literals = set().union(*map(set, full_implications))
for k in literals:
for i in literals:
if (i, k) in full_implications:
for j in literals:
if (k, j) in full_implications:
full_implications.add((i, j))
return full_implications
def deduce_alpha_implications(implications):
"""deduce all implications
Description by example
----------------------
given set of logic rules:
a -> b
b -> c
we deduce all possible rules:
a -> b, c
b -> c
implications: [] of (a,b)
return: {} of a -> set([b, c, ...])
"""
implications = implications + [(Not(j), Not(i)) for (i, j) in implications]
res = defaultdict(set)
full_implications = transitive_closure(implications)
for a, b in full_implications:
if a == b:
continue # skip a->a cyclic input
res[a].add(b)
# Clean up tautologies and check consistency
for a, impl in res.items():
impl.discard(a)
na = Not(a)
if na in impl:
raise ValueError(
'implications are inconsistent: %s -> %s %s' % (a, na, impl))
return res
def apply_beta_to_alpha_route(alpha_implications, beta_rules):
"""apply additional beta-rules (And conditions) to already-built
alpha implication tables
TODO: write about
- static extension of alpha-chains
- attaching refs to beta-nodes to alpha chains
e.g.
alpha_implications:
a -> [b, !c, d]
b -> [d]
...
beta_rules:
&(b,d) -> e
then we'll extend a's rule to the following
a -> [b, !c, d, e]
"""
x_impl = {}
for x in alpha_implications.keys():
x_impl[x] = (set(alpha_implications[x]), [])
for bcond, bimpl in beta_rules:
for bk in bcond.args:
if bk in x_impl:
continue
x_impl[bk] = (set(), [])
# static extensions to alpha rules:
# A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c
seen_static_extension = True
while seen_static_extension:
seen_static_extension = False
for bcond, bimpl in beta_rules:
if not isinstance(bcond, And):
raise TypeError("Cond is not And")
bargs = set(bcond.args)
for x, (ximpls, bb) in x_impl.items():
x_all = ximpls | {x}
# A: ... -> a B: &(...) -> a is non-informative
if bimpl not in x_all and bargs.issubset(x_all):
ximpls.add(bimpl)
# we introduced new implication - now we have to restore
# completeness of the whole set.
bimpl_impl = x_impl.get(bimpl)
if bimpl_impl is not None:
ximpls |= bimpl_impl[0]
seen_static_extension = True
# attach beta-nodes which can be possibly triggered by an alpha-chain
for bidx, (bcond, bimpl) in enumerate(beta_rules):
bargs = set(bcond.args)
for x, (ximpls, bb) in x_impl.items():
x_all = ximpls | {x}
# A: ... -> a B: &(...) -> a (non-informative)
if bimpl in x_all:
continue
# A: x -> a... B: &(!a,...) -> ... (will never trigger)
# A: x -> a... B: &(...) -> !a (will never trigger)
if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all):
continue
if bargs & x_all:
bb.append(bidx)
return x_impl
def rules_2prereq(rules):
"""build prerequisites table from rules
Description by example
----------------------
given set of logic rules:
a -> b, c
b -> c
we build prerequisites (from what points something can be deduced):
b <- a
c <- a, b
rules: {} of a -> [b, c, ...]
return: {} of c <- [a, b, ...]
Note however, that this prerequisites may be *not* enough to prove a
fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b)
is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=?
"""
prereq = defaultdict(set)
for (a, _), impl in rules.items():
if isinstance(a, Not):
a = a.args[0]
for (i, _) in impl:
if isinstance(i, Not):
i = i.args[0]
prereq[i].add(a)
return prereq
################
# RULES PROVER #
################
class TautologyDetected(Exception):
"""(internal) Prover uses it for reporting detected tautology"""
pass
class Prover:
"""ai - prover of logic rules
given a set of initial rules, Prover tries to prove all possible rules
which follow from given premises.
As a result proved_rules are always either in one of two forms: alpha or
beta:
Alpha rules
-----------
This are rules of the form::
a -> b & c & d & ...
Beta rules
----------
This are rules of the form::
&(a,b,...) -> c & d & ...
i.e. beta rules are join conditions that say that something follows when
*several* facts are true at the same time.
"""
def __init__(self):
self.proved_rules = []
self._rules_seen = set()
def split_alpha_beta(self):
"""split proved rules into alpha and beta chains"""
rules_alpha = [] # a -> b
rules_beta = [] # &(...) -> b
for a, b in self.proved_rules:
if isinstance(a, And):
rules_beta.append((a, b))
else:
rules_alpha.append((a, b))
return rules_alpha, rules_beta
@property
def rules_alpha(self):
return self.split_alpha_beta()[0]
@property
def rules_beta(self):
return self.split_alpha_beta()[1]
def process_rule(self, a, b):
"""process a -> b rule""" # TODO write more?
if (not a) or isinstance(b, bool):
return
if isinstance(a, bool):
return
if (a, b) in self._rules_seen:
return
else:
self._rules_seen.add((a, b))
# this is the core of processing
try:
self._process_rule(a, b)
except TautologyDetected:
pass
def _process_rule(self, a, b):
# right part first
# a -> b & c --> a -> b ; a -> c
# (?) FIXME this is only correct when b & c != null !
if isinstance(b, And):
sorted_bargs = sorted(b.args, key=str)
for barg in sorted_bargs:
self.process_rule(a, barg)
# a -> b | c --> !b & !c -> !a
# --> a & !b -> c
# --> a & !c -> b
elif isinstance(b, Or):
sorted_bargs = sorted(b.args, key=str)
# detect tautology first
if not isinstance(a, Logic): # Atom
# tautology: a -> a|c|...
if a in sorted_bargs:
raise TautologyDetected(a, b, 'a -> a|c|...')
self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a))
for bidx in range(len(sorted_bargs)):
barg = sorted_bargs[bidx]
brest = sorted_bargs[:bidx] + sorted_bargs[bidx + 1:]
self.process_rule(And(a, Not(barg)), Or(*brest))
# left part
# a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS
# (this will be the basis of beta-network)
elif isinstance(a, And):
sorted_aargs = sorted(a.args, key=str)
if b in sorted_aargs:
raise TautologyDetected(a, b, 'a & b -> a')
self.proved_rules.append((a, b))
# XXX NOTE at present we ignore !c -> !a | !b
elif isinstance(a, Or):
sorted_aargs = sorted(a.args, key=str)
if b in sorted_aargs:
raise TautologyDetected(a, b, 'a | b -> a')
for aarg in sorted_aargs:
self.process_rule(aarg, b)
else:
# both `a` and `b` are atoms
self.proved_rules.append((a, b)) # a -> b
self.proved_rules.append((Not(b), Not(a))) # !b -> !a
########################################
class FactRules:
"""Rules that describe how to deduce facts in logic space
When defined, these rules allow implications to quickly be determined
for a set of facts. For this precomputed deduction tables are used.
see `deduce_all_facts` (forward-chaining)
Also it is possible to gather prerequisites for a fact, which is tried
to be proven. (backward-chaining)
Definition Syntax
-----------------
a -> b -- a=T -> b=T (and automatically b=F -> a=F)
a -> !b -- a=T -> b=F
a == b -- a -> b & b -> a
a -> b & c -- a=T -> b=T & c=T
# TODO b | c
Internals
---------
.full_implications[k, v]: all the implications of fact k=v
.beta_triggers[k, v]: beta rules that might be triggered when k=v
.prereq -- {} k <- [] of k's prerequisites
.defined_facts -- set of defined fact names
"""
def __init__(self, rules):
"""Compile rules into internal lookup tables"""
if isinstance(rules, str):
rules = rules.splitlines()
# --- parse and process rules ---
P = Prover()
for rule in rules:
# XXX `a` is hardcoded to be always atom
a, op, b = rule.split(None, 2)
a = Logic.fromstring(a)
b = Logic.fromstring(b)
if op == '->':
P.process_rule(a, b)
elif op == '==':
P.process_rule(a, b)
P.process_rule(b, a)
else:
raise ValueError('unknown op %r' % op)
# --- build deduction networks ---
self.beta_rules = []
for bcond, bimpl in P.rules_beta:
self.beta_rules.append(
({_as_pair(a) for a in bcond.args}, _as_pair(bimpl)))
# deduce alpha implications
impl_a = deduce_alpha_implications(P.rules_alpha)
# now:
# - apply beta rules to alpha chains (static extension), and
# - further associate beta rules to alpha chain (for inference
# at runtime)
impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta)
# extract defined fact names
self.defined_facts = {_base_fact(k) for k in impl_ab.keys()}
# build rels (forward chains)
full_implications = defaultdict(set)
beta_triggers = defaultdict(set)
for k, (impl, betaidxs) in impl_ab.items():
full_implications[_as_pair(k)] = {_as_pair(i) for i in impl}
beta_triggers[_as_pair(k)] = betaidxs
self.full_implications = full_implications
self.beta_triggers = beta_triggers
# build prereq (backward chains)
prereq = defaultdict(set)
rel_prereq = rules_2prereq(full_implications)
for k, pitems in rel_prereq.items():
prereq[k] |= pitems
self.prereq = prereq
def _to_python(self) -> str:
""" Generate a string with plain python representation of the instance """
return '\n'.join(self.print_rules())
@classmethod
def _from_python(cls, data : dict):
""" Generate an instance from the plain python representation """
self = cls('')
for key in ['full_implications', 'beta_triggers', 'prereq']:
d=defaultdict(set)
d.update(data[key])
setattr(self, key, d)
self.beta_rules = data['beta_rules']
self.defined_facts = set(data['defined_facts'])
return self
def _defined_facts_lines(self):
yield 'defined_facts = ['
for fact in sorted(self.defined_facts):
yield f' {fact!r},'
yield '] # defined_facts'
def _full_implications_lines(self):
yield 'full_implications = dict( ['
for fact in sorted(self.defined_facts):
for value in (True, False):
yield f' # Implications of {fact} = {value}:'
yield f' (({fact!r}, {value!r}), set( ('
implications = self.full_implications[(fact, value)]
for implied in sorted(implications):
yield f' {implied!r},'
yield ' ) ),'
yield ' ),'
yield ' ] ) # full_implications'
def _prereq_lines(self):
yield 'prereq = {'
yield ''
for fact in sorted(self.prereq):
yield f' # facts that could determine the value of {fact}'
yield f' {fact!r}: {{'
for pfact in sorted(self.prereq[fact]):
yield f' {pfact!r},'
yield ' },'
yield ''
yield '} # prereq'
def _beta_rules_lines(self):
reverse_implications = defaultdict(list)
for n, (pre, implied) in enumerate(self.beta_rules):
reverse_implications[implied].append((pre, n))
yield '# Note: the order of the beta rules is used in the beta_triggers'
yield 'beta_rules = ['
yield ''
m = 0
indices = {}
for implied in sorted(reverse_implications):
fact, value = implied
yield f' # Rules implying {fact} = {value}'
for pre, n in reverse_implications[implied]:
indices[n] = m
m += 1
setstr = ", ".join(map(str, sorted(pre)))
yield f' ({{{setstr}}},'
yield f' {implied!r}),'
yield ''
yield '] # beta_rules'
yield 'beta_triggers = {'
for query in sorted(self.beta_triggers):
fact, value = query
triggers = [indices[n] for n in self.beta_triggers[query]]
yield f' {query!r}: {triggers!r},'
yield '} # beta_triggers'
def print_rules(self) -> Iterator[str]:
""" Returns a generator with lines to represent the facts and rules """
yield from self._defined_facts_lines()
yield ''
yield ''
yield from self._full_implications_lines()
yield ''
yield ''
yield from self._prereq_lines()
yield ''
yield ''
yield from self._beta_rules_lines()
yield ''
yield ''
yield "generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,"
yield " 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}"
class InconsistentAssumptions(ValueError):
def __str__(self):
kb, fact, value = self.args
return "%s, %s=%s" % (kb, fact, value)
class FactKB(dict):
"""
A simple propositional knowledge base relying on compiled inference rules.
"""
def __str__(self):
return '{\n%s}' % ',\n'.join(
["\t%s: %s" % i for i in sorted(self.items())])
def __init__(self, rules):
self.rules = rules
def _tell(self, k, v):
"""Add fact k=v to the knowledge base.
Returns True if the KB has actually been updated, False otherwise.
"""
if k in self and self[k] is not None:
if self[k] == v:
return False
else:
raise InconsistentAssumptions(self, k, v)
else:
self[k] = v
return True
# *********************************************
# * This is the workhorse, so keep it *fast*. *
# *********************************************
def deduce_all_facts(self, facts):
"""
Update the KB with all the implications of a list of facts.
Facts can be specified as a dictionary or as a list of (key, value)
pairs.
"""
# keep frequently used attributes locally, so we'll avoid extra
# attribute access overhead
full_implications = self.rules.full_implications
beta_triggers = self.rules.beta_triggers
beta_rules = self.rules.beta_rules
if isinstance(facts, dict):
facts = facts.items()
while facts:
beta_maytrigger = set()
# --- alpha chains ---
for k, v in facts:
if not self._tell(k, v) or v is None:
continue
# lookup routing tables
for key, value in full_implications[k, v]:
self._tell(key, value)
beta_maytrigger.update(beta_triggers[k, v])
# --- beta chains ---
facts = []
for bidx in beta_maytrigger:
bcond, bimpl = beta_rules[bidx]
if all(self.get(k) is v for k, v in bcond):
facts.append(bimpl)
|