File size: 51,459 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
"""Tools for manipulating of large commutative expressions. """

from .add import Add
from .mul import Mul, _keep_coeff
from .power import Pow
from .basic import Basic
from .expr import Expr
from .function import expand_power_exp
from .sympify import sympify
from .numbers import Rational, Integer, Number, I, equal_valued
from .singleton import S
from .sorting import default_sort_key, ordered
from .symbol import Dummy
from .traversal import preorder_traversal
from .coreerrors import NonCommutativeExpression
from .containers import Tuple, Dict
from sympy.external.gmpy import SYMPY_INTS
from sympy.utilities.iterables import (common_prefix, common_suffix,
        variations, iterable, is_sequence)

from collections import defaultdict
from typing import Tuple as tTuple


_eps = Dummy(positive=True)


def _isnumber(i):
    return isinstance(i, (SYMPY_INTS, float)) or i.is_Number


def _monotonic_sign(self):
    """Return the value closest to 0 that ``self`` may have if all symbols
    are signed and the result is uniformly the same sign for all values of symbols.
    If a symbol is only signed but not known to be an
    integer or the result is 0 then a symbol representative of the sign of self
    will be returned. Otherwise, None is returned if a) the sign could be positive
    or negative or b) self is not in one of the following forms:

    - L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
      additive constant; if A is zero then the function can be a monomial whose
      sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
      nonnegative.
    - A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
      that does not have a sign change from positive to negative for any set
      of values for the variables.
    - M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
    - A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
    - P(x): a univariate polynomial

    Examples
    ========

    >>> from sympy.core.exprtools import _monotonic_sign as F
    >>> from sympy import Dummy
    >>> nn = Dummy(integer=True, nonnegative=True)
    >>> p = Dummy(integer=True, positive=True)
    >>> p2 = Dummy(integer=True, positive=True)
    >>> F(nn + 1)
    1
    >>> F(p - 1)
    _nneg
    >>> F(nn*p + 1)
    1
    >>> F(p2*p + 1)
    2
    >>> F(nn - 1)  # could be negative, zero or positive
    """
    if not self.is_extended_real:
        return

    if (-self).is_Symbol:
        rv = _monotonic_sign(-self)
        return rv if rv is None else -rv

    if not self.is_Add and self.as_numer_denom()[1].is_number:
        s = self
        if s.is_prime:
            if s.is_odd:
                return Integer(3)
            else:
                return Integer(2)
        elif s.is_composite:
            if s.is_odd:
                return Integer(9)
            else:
                return Integer(4)
        elif s.is_positive:
            if s.is_even:
                if s.is_prime is False:
                    return Integer(4)
                else:
                    return Integer(2)
            elif s.is_integer:
                return S.One
            else:
                return _eps
        elif s.is_extended_negative:
            if s.is_even:
                return Integer(-2)
            elif s.is_integer:
                return S.NegativeOne
            else:
                return -_eps
        if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
            return S.Zero
        return None

    # univariate polynomial
    free = self.free_symbols
    if len(free) == 1:
        if self.is_polynomial():
            from sympy.polys.polytools import real_roots
            from sympy.polys.polyroots import roots
            from sympy.polys.polyerrors import PolynomialError
            x = free.pop()
            x0 = _monotonic_sign(x)
            if x0 in (_eps, -_eps):
                x0 = S.Zero
            if x0 is not None:
                d = self.diff(x)
                if d.is_number:
                    currentroots = []
                else:
                    try:
                        currentroots = real_roots(d)
                    except (PolynomialError, NotImplementedError):
                        currentroots = [r for r in roots(d, x) if r.is_extended_real]
                y = self.subs(x, x0)
                if x.is_nonnegative and all(
                        (r - x0).is_nonpositive for r in currentroots):
                    if y.is_nonnegative and d.is_positive:
                        if y:
                            return y if y.is_positive else Dummy('pos', positive=True)
                        else:
                            return Dummy('nneg', nonnegative=True)
                    if y.is_nonpositive and d.is_negative:
                        if y:
                            return y if y.is_negative else Dummy('neg', negative=True)
                        else:
                            return Dummy('npos', nonpositive=True)
                elif x.is_nonpositive and all(
                        (r - x0).is_nonnegative for r in currentroots):
                    if y.is_nonnegative and d.is_negative:
                        if y:
                            return Dummy('pos', positive=True)
                        else:
                            return Dummy('nneg', nonnegative=True)
                    if y.is_nonpositive and d.is_positive:
                        if y:
                            return Dummy('neg', negative=True)
                        else:
                            return Dummy('npos', nonpositive=True)
        else:
            n, d = self.as_numer_denom()
            den = None
            if n.is_number:
                den = _monotonic_sign(d)
            elif not d.is_number:
                if _monotonic_sign(n) is not None:
                    den = _monotonic_sign(d)
            if den is not None and (den.is_positive or den.is_negative):
                v = n*den
                if v.is_positive:
                    return Dummy('pos', positive=True)
                elif v.is_nonnegative:
                    return Dummy('nneg', nonnegative=True)
                elif v.is_negative:
                    return Dummy('neg', negative=True)
                elif v.is_nonpositive:
                    return Dummy('npos', nonpositive=True)
        return None

    # multivariate
    c, a = self.as_coeff_Add()
    v = None
    if not a.is_polynomial():
        # F/A or A/F where A is a number and F is a signed, rational monomial
        n, d = a.as_numer_denom()
        if not (n.is_number or d.is_number):
            return
        if (
                a.is_Mul or a.is_Pow) and \
                a.is_rational and \
                all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
                (a.is_positive or a.is_negative):
            v = S.One
            for ai in Mul.make_args(a):
                if ai.is_number:
                    v *= ai
                    continue
                reps = {}
                for x in ai.free_symbols:
                    reps[x] = _monotonic_sign(x)
                    if reps[x] is None:
                        return
                v *= ai.subs(reps)
    elif c:
        # signed linear expression
        if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
            free = list(a.free_symbols)
            p = {}
            for i in free:
                v = _monotonic_sign(i)
                if v is None:
                    return
                p[i] = v or (_eps if i.is_nonnegative else -_eps)
            v = a.xreplace(p)
    if v is not None:
        rv = v + c
        if v.is_nonnegative and rv.is_positive:
            return rv.subs(_eps, 0)
        if v.is_nonpositive and rv.is_negative:
            return rv.subs(_eps, 0)


def decompose_power(expr: Expr) -> tTuple[Expr, int]:
    """
    Decompose power into symbolic base and integer exponent.

    Examples
    ========

    >>> from sympy.core.exprtools import decompose_power
    >>> from sympy.abc import x, y
    >>> from sympy import exp

    >>> decompose_power(x)
    (x, 1)
    >>> decompose_power(x**2)
    (x, 2)
    >>> decompose_power(exp(2*y/3))
    (exp(y/3), 2)

    """
    base, exp = expr.as_base_exp()

    if exp.is_Number:
        if exp.is_Rational:
            if not exp.is_Integer:
                base = Pow(base, Rational(1, exp.q))  # type: ignore
            e = exp.p  # type: ignore
        else:
            base, e = expr, 1
    else:
        exp, tail = exp.as_coeff_Mul(rational=True)

        if exp is S.NegativeOne:
            base, e = Pow(base, tail), -1
        elif exp is not S.One:
            # todo: after dropping python 3.7 support, use overload and Literal
            #  in as_coeff_Mul to make exp Rational, and remove these 2 ignores
            tail = _keep_coeff(Rational(1, exp.q), tail)  # type: ignore
            base, e = Pow(base, tail), exp.p  # type: ignore
        else:
            base, e = expr, 1

    return base, e


def decompose_power_rat(expr: Expr) -> tTuple[Expr, Rational]:
    """
    Decompose power into symbolic base and rational exponent;
    if the exponent is not a Rational, then separate only the
    integer coefficient.

    Examples
    ========

    >>> from sympy.core.exprtools import decompose_power_rat
    >>> from sympy.abc import x
    >>> from sympy import sqrt, exp

    >>> decompose_power_rat(sqrt(x))
    (x, 1/2)
    >>> decompose_power_rat(exp(-3*x/2))
    (exp(x/2), -3)

    """
    _ = base, exp = expr.as_base_exp()
    return _ if exp.is_Rational else decompose_power(expr)


class Factors:
    """Efficient representation of ``f_1*f_2*...*f_n``."""

    __slots__ = ('factors', 'gens')

    def __init__(self, factors=None):  # Factors
        """Initialize Factors from dict or expr.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x
        >>> from sympy import I
        >>> e = 2*x**3
        >>> Factors(e)
        Factors({2: 1, x: 3})
        >>> Factors(e.as_powers_dict())
        Factors({2: 1, x: 3})
        >>> f = _
        >>> f.factors  # underlying dictionary
        {2: 1, x: 3}
        >>> f.gens  # base of each factor
        frozenset({2, x})
        >>> Factors(0)
        Factors({0: 1})
        >>> Factors(I)
        Factors({I: 1})

        Notes
        =====

        Although a dictionary can be passed, only minimal checking is
        performed: powers of -1 and I are made canonical.

        """
        if isinstance(factors, (SYMPY_INTS, float)):
            factors = S(factors)
        if isinstance(factors, Factors):
            factors = factors.factors.copy()
        elif factors in (None, S.One):
            factors = {}
        elif factors is S.Zero or factors == 0:
            factors = {S.Zero: S.One}
        elif isinstance(factors, Number):
            n = factors
            factors = {}
            if n < 0:
                factors[S.NegativeOne] = S.One
                n = -n
            if n is not S.One:
                if n.is_Float or n.is_Integer or n is S.Infinity:
                    factors[n] = S.One
                elif n.is_Rational:
                    # since we're processing Numbers, the denominator is
                    # stored with a negative exponent; all other factors
                    # are left .
                    if n.p != 1:
                        factors[Integer(n.p)] = S.One
                    factors[Integer(n.q)] = S.NegativeOne
                else:
                    raise ValueError('Expected Float|Rational|Integer, not %s' % n)
        elif isinstance(factors, Basic) and not factors.args:
            factors = {factors: S.One}
        elif isinstance(factors, Expr):
            c, nc = factors.args_cnc()
            i = c.count(I)
            for _ in range(i):
                c.remove(I)
            factors = dict(Mul._from_args(c).as_powers_dict())
            # Handle all rational Coefficients
            for f in list(factors.keys()):
                if isinstance(f, Rational) and not isinstance(f, Integer):
                    p, q = Integer(f.p), Integer(f.q)
                    factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
                    factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
                    factors.pop(f)
            if i:
                factors[I] = factors.get(I, S.Zero) + i
            if nc:
                factors[Mul(*nc, evaluate=False)] = S.One
        else:
            factors = factors.copy()  # /!\ should be dict-like

            # tidy up -/+1 and I exponents if Rational

            handle = [k for k in factors if k is I or k in (-1, 1)]
            if handle:
                i1 = S.One
                for k in handle:
                    if not _isnumber(factors[k]):
                        continue
                    i1 *= k**factors.pop(k)
                if i1 is not S.One:
                    for a in i1.args if i1.is_Mul else [i1]:  # at worst, -1.0*I*(-1)**e
                        if a is S.NegativeOne:
                            factors[a] = S.One
                        elif a is I:
                            factors[I] = S.One
                        elif a.is_Pow:
                            factors[a.base] = factors.get(a.base, S.Zero) + a.exp
                        elif equal_valued(a, 1):
                            factors[a] = S.One
                        elif equal_valued(a, -1):
                            factors[-a] = S.One
                            factors[S.NegativeOne] = S.One
                        else:
                            raise ValueError('unexpected factor in i1: %s' % a)

        self.factors = factors
        keys = getattr(factors, 'keys', None)
        if keys is None:
            raise TypeError('expecting Expr or dictionary')
        self.gens = frozenset(keys())

    def __hash__(self):  # Factors
        keys = tuple(ordered(self.factors.keys()))
        values = [self.factors[k] for k in keys]
        return hash((keys, values))

    def __repr__(self):  # Factors
        return "Factors({%s})" % ', '.join(
            ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])

    @property
    def is_zero(self):  # Factors
        """
        >>> from sympy.core.exprtools import Factors
        >>> Factors(0).is_zero
        True
        """
        f = self.factors
        return len(f) == 1 and S.Zero in f

    @property
    def is_one(self):  # Factors
        """
        >>> from sympy.core.exprtools import Factors
        >>> Factors(1).is_one
        True
        """
        return not self.factors

    def as_expr(self):  # Factors
        """Return the underlying expression.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y
        >>> Factors((x*y**2).as_powers_dict()).as_expr()
        x*y**2

        """

        args = []
        for factor, exp in self.factors.items():
            if exp != 1:
                if isinstance(exp, Integer):
                    b, e = factor.as_base_exp()
                    e = _keep_coeff(exp, e)
                    args.append(b**e)
                else:
                    args.append(factor**exp)
            else:
                args.append(factor)
        return Mul(*args)

    def mul(self, other):  # Factors
        """Return Factors of ``self * other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.mul(b)
        Factors({x: 2, y: 3, z: -1})
        >>> a*b
        Factors({x: 2, y: 3, z: -1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
        if any(f.is_zero for f in (self, other)):
            return Factors(S.Zero)
        factors = dict(self.factors)

        for factor, exp in other.factors.items():
            if factor in factors:
                exp = factors[factor] + exp

                if not exp:
                    del factors[factor]
                    continue

            factors[factor] = exp

        return Factors(factors)

    def normal(self, other):
        """Return ``self`` and ``other`` with ``gcd`` removed from each.
        The only differences between this and method ``div`` is that this
        is 1) optimized for the case when there are few factors in common and
        2) this does not raise an error if ``other`` is zero.

        See Also
        ========
        div

        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                return (Factors(), Factors(S.Zero))
            if self.is_zero:
                return (Factors(S.Zero), Factors())

        self_factors = dict(self.factors)
        other_factors = dict(other.factors)

        for factor, self_exp in self.factors.items():
            try:
                other_exp = other.factors[factor]
            except KeyError:
                continue

            exp = self_exp - other_exp

            if not exp:
                del self_factors[factor]
                del other_factors[factor]
            elif _isnumber(exp):
                if exp > 0:
                    self_factors[factor] = exp
                    del other_factors[factor]
                else:
                    del self_factors[factor]
                    other_factors[factor] = -exp
            else:
                r = self_exp.extract_additively(other_exp)
                if r is not None:
                    if r:
                        self_factors[factor] = r
                        del other_factors[factor]
                    else:  # should be handled already
                        del self_factors[factor]
                        del other_factors[factor]
                else:
                    sc, sa = self_exp.as_coeff_Add()
                    if sc:
                        oc, oa = other_exp.as_coeff_Add()
                        diff = sc - oc
                        if diff > 0:
                            self_factors[factor] -= oc
                            other_exp = oa
                        elif diff < 0:
                            self_factors[factor] -= sc
                            other_factors[factor] -= sc
                            other_exp = oa - diff
                        else:
                            self_factors[factor] = sa
                            other_exp = oa
                    if other_exp:
                        other_factors[factor] = other_exp
                    else:
                        del other_factors[factor]

        return Factors(self_factors), Factors(other_factors)

    def div(self, other):  # Factors
        """Return ``self`` and ``other`` with ``gcd`` removed from each.
        This is optimized for the case when there are many factors in common.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> from sympy import S

        >>> a = Factors((x*y**2).as_powers_dict())
        >>> a.div(a)
        (Factors({}), Factors({}))
        >>> a.div(x*z)
        (Factors({y: 2}), Factors({z: 1}))

        The ``/`` operator only gives ``quo``:

        >>> a/x
        Factors({y: 2})

        Factors treats its factors as though they are all in the numerator, so
        if you violate this assumption the results will be correct but will
        not strictly correspond to the numerator and denominator of the ratio:

        >>> a.div(x/z)
        (Factors({y: 2}), Factors({z: -1}))

        Factors is also naive about bases: it does not attempt any denesting
        of Rational-base terms, for example the following does not become
        2**(2*x)/2.

        >>> Factors(2**(2*x + 2)).div(S(8))
        (Factors({2: 2*x + 2}), Factors({8: 1}))

        factor_terms can clean up such Rational-bases powers:

        >>> from sympy import factor_terms
        >>> n, d = Factors(2**(2*x + 2)).div(S(8))
        >>> n.as_expr()/d.as_expr()
        2**(2*x + 2)/8
        >>> factor_terms(_)
        2**(2*x)/2

        """
        quo, rem = dict(self.factors), {}

        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                raise ZeroDivisionError
            if self.is_zero:
                return (Factors(S.Zero), Factors())

        for factor, exp in other.factors.items():
            if factor in quo:
                d = quo[factor] - exp
                if _isnumber(d):
                    if d <= 0:
                        del quo[factor]

                    if d >= 0:
                        if d:
                            quo[factor] = d

                        continue

                    exp = -d

                else:
                    r = quo[factor].extract_additively(exp)
                    if r is not None:
                        if r:
                            quo[factor] = r
                        else:  # should be handled already
                            del quo[factor]
                    else:
                        other_exp = exp
                        sc, sa = quo[factor].as_coeff_Add()
                        if sc:
                            oc, oa = other_exp.as_coeff_Add()
                            diff = sc - oc
                            if diff > 0:
                                quo[factor] -= oc
                                other_exp = oa
                            elif diff < 0:
                                quo[factor] -= sc
                                other_exp = oa - diff
                            else:
                                quo[factor] = sa
                                other_exp = oa
                        if other_exp:
                            rem[factor] = other_exp
                        else:
                            assert factor not in rem
                    continue

            rem[factor] = exp

        return Factors(quo), Factors(rem)

    def quo(self, other):  # Factors
        """Return numerator Factor of ``self / other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.quo(b)  # same as a/b
        Factors({y: 1})
        """
        return self.div(other)[0]

    def rem(self, other):  # Factors
        """Return denominator Factors of ``self / other``.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.rem(b)
        Factors({z: -1})
        >>> a.rem(a)
        Factors({})
        """
        return self.div(other)[1]

    def pow(self, other):  # Factors
        """Return self raised to a non-negative integer power.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> a**2
        Factors({x: 2, y: 4})

        """
        if isinstance(other, Factors):
            other = other.as_expr()
            if other.is_Integer:
                other = int(other)
        if isinstance(other, SYMPY_INTS) and other >= 0:
            factors = {}

            if other:
                for factor, exp in self.factors.items():
                    factors[factor] = exp*other

            return Factors(factors)
        else:
            raise ValueError("expected non-negative integer, got %s" % other)

    def gcd(self, other):  # Factors
        """Return Factors of ``gcd(self, other)``. The keys are
        the intersection of factors with the minimum exponent for
        each factor.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.gcd(b)
        Factors({x: 1, y: 1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if other.is_zero:
                return Factors(self.factors)

        factors = {}

        for factor, exp in self.factors.items():
            factor, exp = sympify(factor), sympify(exp)
            if factor in other.factors:
                lt = (exp - other.factors[factor]).is_negative
                if lt == True:
                    factors[factor] = exp
                elif lt == False:
                    factors[factor] = other.factors[factor]

        return Factors(factors)

    def lcm(self, other):  # Factors
        """Return Factors of ``lcm(self, other)`` which are
        the union of factors with the maximum exponent for
        each factor.

        Examples
        ========

        >>> from sympy.core.exprtools import Factors
        >>> from sympy.abc import x, y, z
        >>> a = Factors((x*y**2).as_powers_dict())
        >>> b = Factors((x*y/z).as_powers_dict())
        >>> a.lcm(b)
        Factors({x: 1, y: 2, z: -1})
        """
        if not isinstance(other, Factors):
            other = Factors(other)
            if any(f.is_zero for f in (self, other)):
                return Factors(S.Zero)

        factors = dict(self.factors)

        for factor, exp in other.factors.items():
            if factor in factors:
                exp = max(exp, factors[factor])

            factors[factor] = exp

        return Factors(factors)

    def __mul__(self, other):  # Factors
        return self.mul(other)

    def __divmod__(self, other):  # Factors
        return self.div(other)

    def __truediv__(self, other):  # Factors
        return self.quo(other)

    def __mod__(self, other):  # Factors
        return self.rem(other)

    def __pow__(self, other):  # Factors
        return self.pow(other)

    def __eq__(self, other):  # Factors
        if not isinstance(other, Factors):
            other = Factors(other)
        return self.factors == other.factors

    def __ne__(self, other):  # Factors
        return not self == other


class Term:
    """Efficient representation of ``coeff*(numer/denom)``. """

    __slots__ = ('coeff', 'numer', 'denom')

    def __init__(self, term, numer=None, denom=None):  # Term
        if numer is None and denom is None:
            if not term.is_commutative:
                raise NonCommutativeExpression(
                    'commutative expression expected')

            coeff, factors = term.as_coeff_mul()
            numer, denom = defaultdict(int), defaultdict(int)

            for factor in factors:
                base, exp = decompose_power(factor)

                if base.is_Add:
                    cont, base = base.primitive()
                    coeff *= cont**exp

                if exp > 0:
                    numer[base] += exp
                else:
                    denom[base] += -exp

            numer = Factors(numer)
            denom = Factors(denom)
        else:
            coeff = term

            if numer is None:
                numer = Factors()

            if denom is None:
                denom = Factors()

        self.coeff = coeff
        self.numer = numer
        self.denom = denom

    def __hash__(self):  # Term
        return hash((self.coeff, self.numer, self.denom))

    def __repr__(self):  # Term
        return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)

    def as_expr(self):  # Term
        return self.coeff*(self.numer.as_expr()/self.denom.as_expr())

    def mul(self, other):  # Term
        coeff = self.coeff*other.coeff
        numer = self.numer.mul(other.numer)
        denom = self.denom.mul(other.denom)

        numer, denom = numer.normal(denom)

        return Term(coeff, numer, denom)

    def inv(self):  # Term
        return Term(1/self.coeff, self.denom, self.numer)

    def quo(self, other):  # Term
        return self.mul(other.inv())

    def pow(self, other):  # Term
        if other < 0:
            return self.inv().pow(-other)
        else:
            return Term(self.coeff ** other,
                        self.numer.pow(other),
                        self.denom.pow(other))

    def gcd(self, other):  # Term
        return Term(self.coeff.gcd(other.coeff),
                    self.numer.gcd(other.numer),
                    self.denom.gcd(other.denom))

    def lcm(self, other):  # Term
        return Term(self.coeff.lcm(other.coeff),
                    self.numer.lcm(other.numer),
                    self.denom.lcm(other.denom))

    def __mul__(self, other):  # Term
        if isinstance(other, Term):
            return self.mul(other)
        else:
            return NotImplemented

    def __truediv__(self, other):  # Term
        if isinstance(other, Term):
            return self.quo(other)
        else:
            return NotImplemented

    def __pow__(self, other):  # Term
        if isinstance(other, SYMPY_INTS):
            return self.pow(other)
        else:
            return NotImplemented

    def __eq__(self, other):  # Term
        return (self.coeff == other.coeff and
                self.numer == other.numer and
                self.denom == other.denom)

    def __ne__(self, other):  # Term
        return not self == other


def _gcd_terms(terms, isprimitive=False, fraction=True):
    """Helper function for :func:`gcd_terms`.

    Parameters
    ==========

    isprimitive : boolean, optional
        If ``isprimitive`` is True then the call to primitive
        for an Add will be skipped. This is useful when the
        content has already been extracted.

    fraction : boolean, optional
        If ``fraction`` is True then the expression will appear over a common
        denominator, the lcm of all term denominators.
    """

    if isinstance(terms, Basic) and not isinstance(terms, Tuple):
        terms = Add.make_args(terms)

    terms = list(map(Term, [t for t in terms if t]))

    # there is some simplification that may happen if we leave this
    # here rather than duplicate it before the mapping of Term onto
    # the terms
    if len(terms) == 0:
        return S.Zero, S.Zero, S.One

    if len(terms) == 1:
        cont = terms[0].coeff
        numer = terms[0].numer.as_expr()
        denom = terms[0].denom.as_expr()

    else:
        cont = terms[0]
        for term in terms[1:]:
            cont = cont.gcd(term)

        for i, term in enumerate(terms):
            terms[i] = term.quo(cont)

        if fraction:
            denom = terms[0].denom

            for term in terms[1:]:
                denom = denom.lcm(term.denom)

            numers = []
            for term in terms:
                numer = term.numer.mul(denom.quo(term.denom))
                numers.append(term.coeff*numer.as_expr())
        else:
            numers = [t.as_expr() for t in terms]
            denom = Term(S.One).numer

        cont = cont.as_expr()
        numer = Add(*numers)
        denom = denom.as_expr()

    if not isprimitive and numer.is_Add:
        _cont, numer = numer.primitive()
        cont *= _cont

    return cont, numer, denom


def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
    """Compute the GCD of ``terms`` and put them together.

    Parameters
    ==========

    terms : Expr
        Can be an expression or a non-Basic sequence of expressions
        which will be handled as though they are terms from a sum.

    isprimitive : bool, optional
        If ``isprimitive`` is True the _gcd_terms will not run the primitive
        method on the terms.

    clear : bool, optional
        It controls the removal of integers from the denominator of an Add
        expression. When True (default), all numerical denominator will be cleared;
        when False the denominators will be cleared only if all terms had numerical
        denominators other than 1.

    fraction : bool, optional
        When True (default), will put the expression over a common
        denominator.

    Examples
    ========

    >>> from sympy import gcd_terms
    >>> from sympy.abc import x, y

    >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
    y*(x + 1)*(x + y + 1)
    >>> gcd_terms(x/2 + 1)
    (x + 2)/2
    >>> gcd_terms(x/2 + 1, clear=False)
    x/2 + 1
    >>> gcd_terms(x/2 + y/2, clear=False)
    (x + y)/2
    >>> gcd_terms(x/2 + 1/x)
    (x**2 + 2)/(2*x)
    >>> gcd_terms(x/2 + 1/x, fraction=False)
    (x + 2/x)/2
    >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
    x/2 + 1/x

    >>> gcd_terms(x/2/y + 1/x/y)
    (x**2 + 2)/(2*x*y)
    >>> gcd_terms(x/2/y + 1/x/y, clear=False)
    (x**2/2 + 1)/(x*y)
    >>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
    (x/2 + 1/x)/y

    The ``clear`` flag was ignored in this case because the returned
    expression was a rational expression, not a simple sum.

    See Also
    ========

    factor_terms, sympy.polys.polytools.terms_gcd

    """
    def mask(terms):
        """replace nc portions of each term with a unique Dummy symbols
        and return the replacements to restore them"""
        args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
        reps = []
        for i, (c, nc) in enumerate(args):
            if nc:
                nc = Mul(*nc)
                d = Dummy()
                reps.append((d, nc))
                c.append(d)
                args[i] = Mul(*c)
            else:
                args[i] = c
        return args, dict(reps)

    isadd = isinstance(terms, Add)
    addlike = isadd or not isinstance(terms, Basic) and \
        is_sequence(terms, include=set) and \
        not isinstance(terms, Dict)

    if addlike:
        if isadd:  # i.e. an Add
            terms = list(terms.args)
        else:
            terms = sympify(terms)
        terms, reps = mask(terms)
        cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
        numer = numer.xreplace(reps)
        coeff, factors = cont.as_coeff_Mul()
        if not clear:
            c, _coeff = coeff.as_coeff_Mul()
            if not c.is_Integer and not clear and numer.is_Add:
                n, d = c.as_numer_denom()
                _numer = numer/d
                if any(a.as_coeff_Mul()[0].is_Integer
                        for a in _numer.args):
                    numer = _numer
                    coeff = n*_coeff
        return _keep_coeff(coeff, factors*numer/denom, clear=clear)

    if not isinstance(terms, Basic):
        return terms

    if terms.is_Atom:
        return terms

    if terms.is_Mul:
        c, args = terms.as_coeff_mul()
        return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
            for i in args]), clear=clear)

    def handle(a):
        # don't treat internal args like terms of an Add
        if not isinstance(a, Expr):
            if isinstance(a, Basic):
                if not a.args:
                    return a
                return a.func(*[handle(i) for i in a.args])
            return type(a)([handle(i) for i in a])
        return gcd_terms(a, isprimitive, clear, fraction)

    if isinstance(terms, Dict):
        return Dict(*[(k, handle(v)) for k, v in terms.args])
    return terms.func(*[handle(i) for i in terms.args])


def _factor_sum_int(expr, **kwargs):
    """Return Sum or Integral object with factors that are not
    in the wrt variables removed. In cases where there are additive
    terms in the function of the object that are independent, the
    object will be separated into two objects.

    Examples
    ========

    >>> from sympy import Sum, factor_terms
    >>> from sympy.abc import x, y
    >>> factor_terms(Sum(x + y, (x, 1, 3)))
    y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
    >>> factor_terms(Sum(x*y, (x, 1, 3)))
    y*Sum(x, (x, 1, 3))

    Notes
    =====

    If a function in the summand or integrand is replaced
    with a symbol, then this simplification should not be
    done or else an incorrect result will be obtained when
    the symbol is replaced with an expression that depends
    on the variables of summation/integration:

    >>> eq = Sum(y, (x, 1, 3))
    >>> factor_terms(eq).subs(y, x).doit()
    3*x
    >>> eq.subs(y, x).doit()
    6
    """
    result = expr.function
    if result == 0:
        return S.Zero
    limits = expr.limits

    # get the wrt variables
    wrt = {i.args[0] for i in limits}

    # factor out any common terms that are independent of wrt
    f = factor_terms(result, **kwargs)
    i, d = f.as_independent(*wrt)
    if isinstance(f, Add):
        return i * expr.func(1, *limits) + expr.func(d, *limits)
    else:
        return i * expr.func(d, *limits)


def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
    """Remove common factors from terms in all arguments without
    changing the underlying structure of the expr. No expansion or
    simplification (and no processing of non-commutatives) is performed.

    Parameters
    ==========

    radical: bool, optional
        If radical=True then a radical common to all terms will be factored
        out of any Add sub-expressions of the expr.

    clear : bool, optional
        If clear=False (default) then coefficients will not be separated
        from a single Add if they can be distributed to leave one or more
        terms with integer coefficients.

    fraction : bool, optional
        If fraction=True (default is False) then a common denominator will be
        constructed for the expression.

    sign : bool, optional
        If sign=True (default) then even if the only factor in common is a -1,
        it will be factored out of the expression.

    Examples
    ========

    >>> from sympy import factor_terms, Symbol
    >>> from sympy.abc import x, y
    >>> factor_terms(x + x*(2 + 4*y)**3)
    x*(8*(2*y + 1)**3 + 1)
    >>> A = Symbol('A', commutative=False)
    >>> factor_terms(x*A + x*A + x*y*A)
    x*(y*A + 2*A)

    When ``clear`` is False, a rational will only be factored out of an
    Add expression if all terms of the Add have coefficients that are
    fractions:

    >>> factor_terms(x/2 + 1, clear=False)
    x/2 + 1
    >>> factor_terms(x/2 + 1, clear=True)
    (x + 2)/2

    If a -1 is all that can be factored out, to *not* factor it out, the
    flag ``sign`` must be False:

    >>> factor_terms(-x - y)
    -(x + y)
    >>> factor_terms(-x - y, sign=False)
    -x - y
    >>> factor_terms(-2*x - 2*y, sign=False)
    -2*(x + y)

    See Also
    ========

    gcd_terms, sympy.polys.polytools.terms_gcd

    """
    def do(expr):
        from sympy.concrete.summations import Sum
        from sympy.integrals.integrals import Integral
        is_iterable = iterable(expr)

        if not isinstance(expr, Basic) or expr.is_Atom:
            if is_iterable:
                return type(expr)([do(i) for i in expr])
            return expr

        if expr.is_Pow or expr.is_Function or \
                is_iterable or not hasattr(expr, 'args_cnc'):
            args = expr.args
            newargs = tuple([do(i) for i in args])
            if newargs == args:
                return expr
            return expr.func(*newargs)

        if isinstance(expr, (Sum, Integral)):
            return _factor_sum_int(expr,
                radical=radical, clear=clear,
                fraction=fraction, sign=sign)

        cont, p = expr.as_content_primitive(radical=radical, clear=clear)
        if p.is_Add:
            list_args = [do(a) for a in Add.make_args(p)]
            # get a common negative (if there) which gcd_terms does not remove
            if not any(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is None
                       for a in list_args):
                cont = -cont
                list_args = [-a for a in list_args]
            # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
            special = {}
            for i, a in enumerate(list_args):
                b, e = a.as_base_exp()
                if e.is_Mul and e != Mul(*e.args):
                    list_args[i] = Dummy()
                    special[list_args[i]] = a
            # rebuild p not worrying about the order which gcd_terms will fix
            p = Add._from_args(list_args)
            p = gcd_terms(p,
                isprimitive=True,
                clear=clear,
                fraction=fraction).xreplace(special)
        elif p.args:
            p = p.func(
                *[do(a) for a in p.args])
        rv = _keep_coeff(cont, p, clear=clear, sign=sign)
        return rv
    expr = sympify(expr)
    return do(expr)


def _mask_nc(eq, name=None):
    """
    Return ``eq`` with non-commutative objects replaced with Dummy
    symbols. A dictionary that can be used to restore the original
    values is returned: if it is None, the expression is noncommutative
    and cannot be made commutative. The third value returned is a list
    of any non-commutative symbols that appear in the returned equation.

    Explanation
    ===========

    All non-commutative objects other than Symbols are replaced with
    a non-commutative Symbol. Identical objects will be identified
    by identical symbols.

    If there is only 1 non-commutative object in an expression it will
    be replaced with a commutative symbol. Otherwise, the non-commutative
    entities are retained and the calling routine should handle
    replacements in this case since some care must be taken to keep
    track of the ordering of symbols when they occur within Muls.

    Parameters
    ==========

    name : str
        ``name``, if given, is the name that will be used with numbered Dummy
        variables that will replace the non-commutative objects and is mainly
        used for doctesting purposes.

    Examples
    ========

    >>> from sympy.physics.secondquant import Commutator, NO, F, Fd
    >>> from sympy import symbols
    >>> from sympy.core.exprtools import _mask_nc
    >>> from sympy.abc import x, y
    >>> A, B, C = symbols('A,B,C', commutative=False)

    One nc-symbol:

    >>> _mask_nc(A**2 - x**2, 'd')
    (_d0**2 - x**2, {_d0: A}, [])

    Multiple nc-symbols:

    >>> _mask_nc(A**2 - B**2, 'd')
    (A**2 - B**2, {}, [A, B])

    An nc-object with nc-symbols but no others outside of it:

    >>> _mask_nc(1 + x*Commutator(A, B), 'd')
    (_d0*x + 1, {_d0: Commutator(A, B)}, [])
    >>> _mask_nc(NO(Fd(x)*F(y)), 'd')
    (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])

    Multiple nc-objects:

    >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
    >>> _mask_nc(eq, 'd')
    (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])

    Multiple nc-objects and nc-symbols:

    >>> eq = A*Commutator(A, B) + B*Commutator(A, C)
    >>> _mask_nc(eq, 'd')
    (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])

    """
    name = name or 'mask'
    # Make Dummy() append sequential numbers to the name

    def numbered_names():
        i = 0
        while True:
            yield name + str(i)
            i += 1

    names = numbered_names()

    def Dummy(*args, **kwargs):
        from .symbol import Dummy
        return Dummy(next(names), *args, **kwargs)

    expr = eq
    if expr.is_commutative:
        return eq, {}, []

    # identify nc-objects; symbols and other
    rep = []
    nc_obj = set()
    nc_syms = set()
    pot = preorder_traversal(expr, keys=default_sort_key)
    for i, a in enumerate(pot):
        if any(a == r[0] for r in rep):
            pot.skip()
        elif not a.is_commutative:
            if a.is_symbol:
                nc_syms.add(a)
                pot.skip()
            elif not (a.is_Add or a.is_Mul or a.is_Pow):
                nc_obj.add(a)
                pot.skip()

    # If there is only one nc symbol or object, it can be factored regularly
    # but polys is going to complain, so replace it with a Dummy.
    if len(nc_obj) == 1 and not nc_syms:
        rep.append((nc_obj.pop(), Dummy()))
    elif len(nc_syms) == 1 and not nc_obj:
        rep.append((nc_syms.pop(), Dummy()))

    # Any remaining nc-objects will be replaced with an nc-Dummy and
    # identified as an nc-Symbol to watch out for
    nc_obj = sorted(nc_obj, key=default_sort_key)
    for n in nc_obj:
        nc = Dummy(commutative=False)
        rep.append((n, nc))
        nc_syms.add(nc)
    expr = expr.subs(rep)

    nc_syms = list(nc_syms)
    nc_syms.sort(key=default_sort_key)
    return expr, {v: k for k, v in rep}, nc_syms


def factor_nc(expr):
    """Return the factored form of ``expr`` while handling non-commutative
    expressions.

    Examples
    ========

    >>> from sympy import factor_nc, Symbol
    >>> from sympy.abc import x
    >>> A = Symbol('A', commutative=False)
    >>> B = Symbol('B', commutative=False)
    >>> factor_nc((x**2 + 2*A*x + A**2).expand())
    (x + A)**2
    >>> factor_nc(((x + A)*(x + B)).expand())
    (x + A)*(x + B)
    """
    expr = sympify(expr)
    if not isinstance(expr, Expr) or not expr.args:
        return expr
    if not expr.is_Add:
        return expr.func(*[factor_nc(a) for a in expr.args])
    expr = expr.func(*[expand_power_exp(i) for i in expr.args])

    from sympy.polys.polytools import gcd, factor
    expr, rep, nc_symbols = _mask_nc(expr)

    if rep:
        return factor(expr).subs(rep)
    else:
        args = [a.args_cnc() for a in Add.make_args(expr)]
        c = g = l = r = S.One
        hit = False
        # find any commutative gcd term
        for i, a in enumerate(args):
            if i == 0:
                c = Mul._from_args(a[0])
            elif a[0]:
                c = gcd(c, Mul._from_args(a[0]))
            else:
                c = S.One
        if c is not S.One:
            hit = True
            c, g = c.as_coeff_Mul()
            if g is not S.One:
                for i, (cc, _) in enumerate(args):
                    cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
                    args[i][0] = cc
            for i, (cc, _) in enumerate(args):
                if cc:
                    cc[0] = cc[0]/c
                else:
                    cc = [1/c]
                args[i][0] = cc
        # find any noncommutative common prefix
        for i, a in enumerate(args):
            if i == 0:
                n = a[1][:]
            else:
                n = common_prefix(n, a[1])
            if not n:
                # is there a power that can be extracted?
                if not args[0][1]:
                    break
                b, e = args[0][1][0].as_base_exp()
                ok = False
                if e.is_Integer:
                    for t in args:
                        if not t[1]:
                            break
                        bt, et = t[1][0].as_base_exp()
                        if et.is_Integer and bt == b:
                            e = min(e, et)
                        else:
                            break
                    else:
                        ok = hit = True
                        l = b**e
                        il = b**-e
                        for _ in args:
                            _[1][0] = il*_[1][0]
                        break
                if not ok:
                    break
        else:
            hit = True
            lenn = len(n)
            l = Mul(*n)
            for _ in args:
                _[1] = _[1][lenn:]
        # find any noncommutative common suffix
        for i, a in enumerate(args):
            if i == 0:
                n = a[1][:]
            else:
                n = common_suffix(n, a[1])
            if not n:
                # is there a power that can be extracted?
                if not args[0][1]:
                    break
                b, e = args[0][1][-1].as_base_exp()
                ok = False
                if e.is_Integer:
                    for t in args:
                        if not t[1]:
                            break
                        bt, et = t[1][-1].as_base_exp()
                        if et.is_Integer and bt == b:
                            e = min(e, et)
                        else:
                            break
                    else:
                        ok = hit = True
                        r = b**e
                        il = b**-e
                        for _ in args:
                            _[1][-1] = _[1][-1]*il
                        break
                if not ok:
                    break
        else:
            hit = True
            lenn = len(n)
            r = Mul(*n)
            for _ in args:
                _[1] = _[1][:len(_[1]) - lenn]
        if hit:
            mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
        else:
            mid = expr

        from sympy.simplify.powsimp import powsimp

        # sort the symbols so the Dummys would appear in the same
        # order as the original symbols, otherwise you may introduce
        # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
        # and the former factors into two terms, (A - B)*(A + B) while the
        # latter factors into 3 terms, (-1)*(x - y)*(x + y)
        rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
        unrep1 = [(v, k) for k, v in rep1]
        unrep1.reverse()
        new_mid, r2, _ = _mask_nc(mid.subs(rep1))
        new_mid = powsimp(factor(new_mid))

        new_mid = new_mid.subs(r2).subs(unrep1)

        if new_mid.is_Pow:
            return _keep_coeff(c, g*l*new_mid*r)

        if new_mid.is_Mul:
            def _pemexpand(expr):
                "Expand with the minimal set of hints necessary to check the result."
                return expr.expand(deep=True, mul=True, power_exp=True,
                    power_base=False, basic=False, multinomial=True, log=False)
            # XXX TODO there should be a way to inspect what order the terms
            # must be in and just select the plausible ordering without
            # checking permutations
            cfac = []
            ncfac = []
            for f in new_mid.args:
                if f.is_commutative:
                    cfac.append(f)
                else:
                    b, e = f.as_base_exp()
                    if e.is_Integer:
                        ncfac.extend([b]*e)
                    else:
                        ncfac.append(f)
            pre_mid = g*Mul(*cfac)*l
            target = _pemexpand(expr/c)
            for s in variations(ncfac, len(ncfac)):
                ok = pre_mid*Mul(*s)*r
                if _pemexpand(ok) == target:
                    return _keep_coeff(c, ok)

        # mid was an Add that didn't factor successfully
        return _keep_coeff(c, g*l*mid*r)