File size: 15,741 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from sympy.assumptions.ask import Q
from sympy.assumptions.assume import assuming
from sympy.core.numbers import (I, pi)
from sympy.core.relational import (Eq, Gt)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.complexes import Abs
from sympy.logic.boolalg import Implies
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.assumptions.cnf import CNF, Literal
from sympy.assumptions.satask import (satask, extract_predargs,
    get_relevant_clsfacts)

from sympy.testing.pytest import raises, XFAIL


x, y, z = symbols('x y z')


def test_satask():
    # No relevant facts
    assert satask(Q.real(x), Q.real(x)) is True
    assert satask(Q.real(x), ~Q.real(x)) is False
    assert satask(Q.real(x)) is None

    assert satask(Q.real(x), Q.positive(x)) is True
    assert satask(Q.positive(x), Q.real(x)) is None
    assert satask(Q.real(x), ~Q.positive(x)) is None
    assert satask(Q.positive(x), ~Q.real(x)) is False

    raises(ValueError, lambda: satask(Q.real(x), Q.real(x) & ~Q.real(x)))

    with assuming(Q.positive(x)):
        assert satask(Q.real(x)) is True
        assert satask(~Q.positive(x)) is False
        raises(ValueError, lambda: satask(Q.real(x), ~Q.positive(x)))

    assert satask(Q.zero(x), Q.nonzero(x)) is False
    assert satask(Q.positive(x), Q.zero(x)) is False
    assert satask(Q.real(x), Q.zero(x)) is True
    assert satask(Q.zero(x), Q.zero(x*y)) is None
    assert satask(Q.zero(x*y), Q.zero(x))


def test_zero():
    """
    Everything in this test doesn't work with the ask handlers, and most
    things would be very difficult or impossible to make work under that
    model.

    """
    assert satask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True
    assert satask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) is True

    assert satask(Implies(Q.zero(x), Q.zero(x*y))) is True

    # This one in particular requires computing the fixed-point of the
    # relevant facts, because going from Q.nonzero(x*y) -> ~Q.zero(x*y) and
    # Q.zero(x*y) -> Equivalent(Q.zero(x*y), Q.zero(x) | Q.zero(y)) takes two
    # steps.
    assert satask(Q.zero(x) | Q.zero(y), Q.nonzero(x*y)) is False

    assert satask(Q.zero(x), Q.zero(x**2)) is True


def test_zero_positive():
    assert satask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False
    assert satask(Q.positive(x) & Q.positive(y), Q.zero(x + y)) is False
    assert satask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True
    assert satask(Q.positive(x) & Q.positive(y), Q.nonzero(x + y)) is None

    # This one requires several levels of forward chaining
    assert satask(Q.zero(x*(x + y)), Q.positive(x) & Q.positive(y)) is False

    assert satask(Q.positive(pi*x*y + 1), Q.positive(x) & Q.positive(y)) is True
    assert satask(Q.positive(pi*x*y - 5), Q.positive(x) & Q.positive(y)) is None


def test_zero_pow():
    assert satask(Q.zero(x**y), Q.zero(x) & Q.positive(y)) is True
    assert satask(Q.zero(x**y), Q.nonzero(x) & Q.zero(y)) is False

    assert satask(Q.zero(x), Q.zero(x**y)) is True

    assert satask(Q.zero(x**y), Q.zero(x)) is None


@XFAIL
# Requires correct Q.square calculation first
def test_invertible():
    A = MatrixSymbol('A', 5, 5)
    B = MatrixSymbol('B', 5, 5)
    assert satask(Q.invertible(A*B), Q.invertible(A) & Q.invertible(B)) is True
    assert satask(Q.invertible(A), Q.invertible(A*B)) is True
    assert satask(Q.invertible(A) & Q.invertible(B), Q.invertible(A*B)) is True


def test_prime():
    assert satask(Q.prime(5)) is True
    assert satask(Q.prime(6)) is False
    assert satask(Q.prime(-5)) is False

    assert satask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None
    assert satask(Q.prime(x*y), Q.prime(x) & Q.prime(y)) is False


def test_old_assump():
    assert satask(Q.positive(1)) is True
    assert satask(Q.positive(-1)) is False
    assert satask(Q.positive(0)) is False
    assert satask(Q.positive(I)) is False
    assert satask(Q.positive(pi)) is True

    assert satask(Q.negative(1)) is False
    assert satask(Q.negative(-1)) is True
    assert satask(Q.negative(0)) is False
    assert satask(Q.negative(I)) is False
    assert satask(Q.negative(pi)) is False

    assert satask(Q.zero(1)) is False
    assert satask(Q.zero(-1)) is False
    assert satask(Q.zero(0)) is True
    assert satask(Q.zero(I)) is False
    assert satask(Q.zero(pi)) is False

    assert satask(Q.nonzero(1)) is True
    assert satask(Q.nonzero(-1)) is True
    assert satask(Q.nonzero(0)) is False
    assert satask(Q.nonzero(I)) is False
    assert satask(Q.nonzero(pi)) is True

    assert satask(Q.nonpositive(1)) is False
    assert satask(Q.nonpositive(-1)) is True
    assert satask(Q.nonpositive(0)) is True
    assert satask(Q.nonpositive(I)) is False
    assert satask(Q.nonpositive(pi)) is False

    assert satask(Q.nonnegative(1)) is True
    assert satask(Q.nonnegative(-1)) is False
    assert satask(Q.nonnegative(0)) is True
    assert satask(Q.nonnegative(I)) is False
    assert satask(Q.nonnegative(pi)) is True


def test_rational_irrational():
    assert satask(Q.irrational(2)) is False
    assert satask(Q.rational(2)) is True
    assert satask(Q.irrational(pi)) is True
    assert satask(Q.rational(pi)) is False
    assert satask(Q.irrational(I)) is False
    assert satask(Q.rational(I)) is False

    assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.irrational(y) &
        Q.rational(z)) is None
    assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.rational(y) &
        Q.rational(z)) is True
    assert satask(Q.irrational(pi*x*y), Q.rational(x) & Q.rational(y)) is True

    assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.irrational(y) &
        Q.rational(z)) is None
    assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.rational(y) &
        Q.rational(z)) is True
    assert satask(Q.irrational(pi + x + y), Q.rational(x) & Q.rational(y)) is True

    assert satask(Q.irrational(x*y*z), Q.rational(x) & Q.rational(y) &
        Q.rational(z)) is False
    assert satask(Q.rational(x*y*z), Q.rational(x) & Q.rational(y) &
        Q.rational(z)) is True

    assert satask(Q.irrational(x + y + z), Q.rational(x) & Q.rational(y) &
        Q.rational(z)) is False
    assert satask(Q.rational(x + y + z), Q.rational(x) & Q.rational(y) &
        Q.rational(z)) is True


def test_even_satask():
    assert satask(Q.even(2)) is True
    assert satask(Q.even(3)) is False

    assert satask(Q.even(x*y), Q.even(x) & Q.odd(y)) is True
    assert satask(Q.even(x*y), Q.even(x) & Q.integer(y)) is True
    assert satask(Q.even(x*y), Q.even(x) & Q.even(y)) is True
    assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
    assert satask(Q.even(x*y), Q.even(x)) is None
    assert satask(Q.even(x*y), Q.odd(x) & Q.integer(y)) is None
    assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False

    assert satask(Q.even(abs(x)), Q.even(x)) is True
    assert satask(Q.even(abs(x)), Q.odd(x)) is False
    assert satask(Q.even(x), Q.even(abs(x))) is None # x could be complex


def test_odd_satask():
    assert satask(Q.odd(2)) is False
    assert satask(Q.odd(3)) is True

    assert satask(Q.odd(x*y), Q.even(x) & Q.odd(y)) is False
    assert satask(Q.odd(x*y), Q.even(x) & Q.integer(y)) is False
    assert satask(Q.odd(x*y), Q.even(x) & Q.even(y)) is False
    assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
    assert satask(Q.odd(x*y), Q.even(x)) is None
    assert satask(Q.odd(x*y), Q.odd(x) & Q.integer(y)) is None
    assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True

    assert satask(Q.odd(abs(x)), Q.even(x)) is False
    assert satask(Q.odd(abs(x)), Q.odd(x)) is True
    assert satask(Q.odd(x), Q.odd(abs(x))) is None # x could be complex


def test_integer():
    assert satask(Q.integer(1)) is True
    assert satask(Q.integer(S.Half)) is False

    assert satask(Q.integer(x + y), Q.integer(x) & Q.integer(y)) is True
    assert satask(Q.integer(x + y), Q.integer(x)) is None

    assert satask(Q.integer(x + y), Q.integer(x) & ~Q.integer(y)) is False
    assert satask(Q.integer(x + y + z), Q.integer(x) & Q.integer(y) &
        ~Q.integer(z)) is False
    assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y) &
        ~Q.integer(z)) is None
    assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y)) is None
    assert satask(Q.integer(x + y), Q.integer(x) & Q.irrational(y)) is False

    assert satask(Q.integer(x*y), Q.integer(x) & Q.integer(y)) is True
    assert satask(Q.integer(x*y), Q.integer(x)) is None

    assert satask(Q.integer(x*y), Q.integer(x) & ~Q.integer(y)) is None
    assert satask(Q.integer(x*y), Q.integer(x) & ~Q.rational(y)) is False
    assert satask(Q.integer(x*y*z), Q.integer(x) & Q.integer(y) &
        ~Q.rational(z)) is False
    assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y) &
        ~Q.rational(z)) is None
    assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y)) is None
    assert satask(Q.integer(x*y), Q.integer(x) & Q.irrational(y)) is False


def test_abs():
    assert satask(Q.nonnegative(abs(x))) is True
    assert satask(Q.positive(abs(x)), ~Q.zero(x)) is True
    assert satask(Q.zero(x), ~Q.zero(abs(x))) is False
    assert satask(Q.zero(x), Q.zero(abs(x))) is True
    assert satask(Q.nonzero(x), ~Q.zero(abs(x))) is None # x could be complex
    assert satask(Q.zero(abs(x)), Q.zero(x)) is True


def test_imaginary():
    assert satask(Q.imaginary(2*I)) is True
    assert satask(Q.imaginary(x*y), Q.imaginary(x)) is None
    assert satask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True
    assert satask(Q.imaginary(x), Q.real(x)) is False
    assert satask(Q.imaginary(1)) is False
    assert satask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False
    assert satask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False


def test_real():
    assert satask(Q.real(x*y), Q.real(x) & Q.real(y)) is True
    assert satask(Q.real(x + y), Q.real(x) & Q.real(y)) is True
    assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) is True
    assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y)) is None
    assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False
    assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True
    assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y)) is None


def test_pos_neg():
    assert satask(~Q.positive(x), Q.negative(x)) is True
    assert satask(~Q.negative(x), Q.positive(x)) is True
    assert satask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True
    assert satask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True
    assert satask(Q.positive(x + y), Q.negative(x) & Q.negative(y)) is False
    assert satask(Q.negative(x + y), Q.positive(x) & Q.positive(y)) is False


def test_pow_pos_neg():
    assert satask(Q.nonnegative(x**2), Q.positive(x)) is True
    assert satask(Q.nonpositive(x**2), Q.positive(x)) is False
    assert satask(Q.positive(x**2), Q.positive(x)) is True
    assert satask(Q.negative(x**2), Q.positive(x)) is False
    assert satask(Q.real(x**2), Q.positive(x)) is True

    assert satask(Q.nonnegative(x**2), Q.negative(x)) is True
    assert satask(Q.nonpositive(x**2), Q.negative(x)) is False
    assert satask(Q.positive(x**2), Q.negative(x)) is True
    assert satask(Q.negative(x**2), Q.negative(x)) is False
    assert satask(Q.real(x**2), Q.negative(x)) is True

    assert satask(Q.nonnegative(x**2), Q.nonnegative(x)) is True
    assert satask(Q.nonpositive(x**2), Q.nonnegative(x)) is None
    assert satask(Q.positive(x**2), Q.nonnegative(x)) is None
    assert satask(Q.negative(x**2), Q.nonnegative(x)) is False
    assert satask(Q.real(x**2), Q.nonnegative(x)) is True

    assert satask(Q.nonnegative(x**2), Q.nonpositive(x)) is True
    assert satask(Q.nonpositive(x**2), Q.nonpositive(x)) is None
    assert satask(Q.positive(x**2), Q.nonpositive(x)) is None
    assert satask(Q.negative(x**2), Q.nonpositive(x)) is False
    assert satask(Q.real(x**2), Q.nonpositive(x)) is True

    assert satask(Q.nonnegative(x**3), Q.positive(x)) is True
    assert satask(Q.nonpositive(x**3), Q.positive(x)) is False
    assert satask(Q.positive(x**3), Q.positive(x)) is True
    assert satask(Q.negative(x**3), Q.positive(x)) is False
    assert satask(Q.real(x**3), Q.positive(x)) is True

    assert satask(Q.nonnegative(x**3), Q.negative(x)) is False
    assert satask(Q.nonpositive(x**3), Q.negative(x)) is True
    assert satask(Q.positive(x**3), Q.negative(x)) is False
    assert satask(Q.negative(x**3), Q.negative(x)) is True
    assert satask(Q.real(x**3), Q.negative(x)) is True

    assert satask(Q.nonnegative(x**3), Q.nonnegative(x)) is True
    assert satask(Q.nonpositive(x**3), Q.nonnegative(x)) is None
    assert satask(Q.positive(x**3), Q.nonnegative(x)) is None
    assert satask(Q.negative(x**3), Q.nonnegative(x)) is False
    assert satask(Q.real(x**3), Q.nonnegative(x)) is True

    assert satask(Q.nonnegative(x**3), Q.nonpositive(x)) is None
    assert satask(Q.nonpositive(x**3), Q.nonpositive(x)) is True
    assert satask(Q.positive(x**3), Q.nonpositive(x)) is False
    assert satask(Q.negative(x**3), Q.nonpositive(x)) is None
    assert satask(Q.real(x**3), Q.nonpositive(x)) is True

    # If x is zero, x**negative is not real.
    assert satask(Q.nonnegative(x**-2), Q.nonpositive(x)) is None
    assert satask(Q.nonpositive(x**-2), Q.nonpositive(x)) is None
    assert satask(Q.positive(x**-2), Q.nonpositive(x)) is None
    assert satask(Q.negative(x**-2), Q.nonpositive(x)) is None
    assert satask(Q.real(x**-2), Q.nonpositive(x)) is None

    # We could deduce things for negative powers if x is nonzero, but it
    # isn't implemented yet.


def test_prime_composite():
    assert satask(Q.prime(x), Q.composite(x)) is False
    assert satask(Q.composite(x), Q.prime(x)) is False
    assert satask(Q.composite(x), ~Q.prime(x)) is None
    assert satask(Q.prime(x), ~Q.composite(x)) is None
    # since 1 is neither prime nor composite the following should hold
    assert satask(Q.prime(x), Q.integer(x) & Q.positive(x) & ~Q.composite(x)) is None
    assert satask(Q.prime(2)) is True
    assert satask(Q.prime(4)) is False
    assert satask(Q.prime(1)) is False
    assert satask(Q.composite(1)) is False


def test_extract_predargs():
    props = CNF.from_prop(Q.zero(Abs(x*y)) & Q.zero(x*y))
    assump = CNF.from_prop(Q.zero(x))
    context = CNF.from_prop(Q.zero(y))
    assert extract_predargs(props) == {Abs(x*y), x*y}
    assert extract_predargs(props, assump) == {Abs(x*y), x*y, x}
    assert extract_predargs(props, assump, context) == {Abs(x*y), x*y, x, y}

    props = CNF.from_prop(Eq(x, y))
    assump = CNF.from_prop(Gt(y, z))
    assert extract_predargs(props, assump) == {x, y, z}


def test_get_relevant_clsfacts():
    exprs = {Abs(x*y)}
    exprs, facts = get_relevant_clsfacts(exprs)
    assert exprs == {x*y}
    assert facts.clauses == \
        {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.odd(Abs(x*y)), False),
                    Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.even(x*y), True),
                    Literal(Q.odd(Abs(x*y)), False)}),
        frozenset({Literal(Q.positive(Abs(x*y)), False),
                    Literal(Q.zero(Abs(x*y)), False)})}