Spaces:
Running
Running
File size: 15,741 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from sympy.assumptions.ask import Q
from sympy.assumptions.assume import assuming
from sympy.core.numbers import (I, pi)
from sympy.core.relational import (Eq, Gt)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.complexes import Abs
from sympy.logic.boolalg import Implies
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.assumptions.cnf import CNF, Literal
from sympy.assumptions.satask import (satask, extract_predargs,
get_relevant_clsfacts)
from sympy.testing.pytest import raises, XFAIL
x, y, z = symbols('x y z')
def test_satask():
# No relevant facts
assert satask(Q.real(x), Q.real(x)) is True
assert satask(Q.real(x), ~Q.real(x)) is False
assert satask(Q.real(x)) is None
assert satask(Q.real(x), Q.positive(x)) is True
assert satask(Q.positive(x), Q.real(x)) is None
assert satask(Q.real(x), ~Q.positive(x)) is None
assert satask(Q.positive(x), ~Q.real(x)) is False
raises(ValueError, lambda: satask(Q.real(x), Q.real(x) & ~Q.real(x)))
with assuming(Q.positive(x)):
assert satask(Q.real(x)) is True
assert satask(~Q.positive(x)) is False
raises(ValueError, lambda: satask(Q.real(x), ~Q.positive(x)))
assert satask(Q.zero(x), Q.nonzero(x)) is False
assert satask(Q.positive(x), Q.zero(x)) is False
assert satask(Q.real(x), Q.zero(x)) is True
assert satask(Q.zero(x), Q.zero(x*y)) is None
assert satask(Q.zero(x*y), Q.zero(x))
def test_zero():
"""
Everything in this test doesn't work with the ask handlers, and most
things would be very difficult or impossible to make work under that
model.
"""
assert satask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True
assert satask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) is True
assert satask(Implies(Q.zero(x), Q.zero(x*y))) is True
# This one in particular requires computing the fixed-point of the
# relevant facts, because going from Q.nonzero(x*y) -> ~Q.zero(x*y) and
# Q.zero(x*y) -> Equivalent(Q.zero(x*y), Q.zero(x) | Q.zero(y)) takes two
# steps.
assert satask(Q.zero(x) | Q.zero(y), Q.nonzero(x*y)) is False
assert satask(Q.zero(x), Q.zero(x**2)) is True
def test_zero_positive():
assert satask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False
assert satask(Q.positive(x) & Q.positive(y), Q.zero(x + y)) is False
assert satask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True
assert satask(Q.positive(x) & Q.positive(y), Q.nonzero(x + y)) is None
# This one requires several levels of forward chaining
assert satask(Q.zero(x*(x + y)), Q.positive(x) & Q.positive(y)) is False
assert satask(Q.positive(pi*x*y + 1), Q.positive(x) & Q.positive(y)) is True
assert satask(Q.positive(pi*x*y - 5), Q.positive(x) & Q.positive(y)) is None
def test_zero_pow():
assert satask(Q.zero(x**y), Q.zero(x) & Q.positive(y)) is True
assert satask(Q.zero(x**y), Q.nonzero(x) & Q.zero(y)) is False
assert satask(Q.zero(x), Q.zero(x**y)) is True
assert satask(Q.zero(x**y), Q.zero(x)) is None
@XFAIL
# Requires correct Q.square calculation first
def test_invertible():
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
assert satask(Q.invertible(A*B), Q.invertible(A) & Q.invertible(B)) is True
assert satask(Q.invertible(A), Q.invertible(A*B)) is True
assert satask(Q.invertible(A) & Q.invertible(B), Q.invertible(A*B)) is True
def test_prime():
assert satask(Q.prime(5)) is True
assert satask(Q.prime(6)) is False
assert satask(Q.prime(-5)) is False
assert satask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None
assert satask(Q.prime(x*y), Q.prime(x) & Q.prime(y)) is False
def test_old_assump():
assert satask(Q.positive(1)) is True
assert satask(Q.positive(-1)) is False
assert satask(Q.positive(0)) is False
assert satask(Q.positive(I)) is False
assert satask(Q.positive(pi)) is True
assert satask(Q.negative(1)) is False
assert satask(Q.negative(-1)) is True
assert satask(Q.negative(0)) is False
assert satask(Q.negative(I)) is False
assert satask(Q.negative(pi)) is False
assert satask(Q.zero(1)) is False
assert satask(Q.zero(-1)) is False
assert satask(Q.zero(0)) is True
assert satask(Q.zero(I)) is False
assert satask(Q.zero(pi)) is False
assert satask(Q.nonzero(1)) is True
assert satask(Q.nonzero(-1)) is True
assert satask(Q.nonzero(0)) is False
assert satask(Q.nonzero(I)) is False
assert satask(Q.nonzero(pi)) is True
assert satask(Q.nonpositive(1)) is False
assert satask(Q.nonpositive(-1)) is True
assert satask(Q.nonpositive(0)) is True
assert satask(Q.nonpositive(I)) is False
assert satask(Q.nonpositive(pi)) is False
assert satask(Q.nonnegative(1)) is True
assert satask(Q.nonnegative(-1)) is False
assert satask(Q.nonnegative(0)) is True
assert satask(Q.nonnegative(I)) is False
assert satask(Q.nonnegative(pi)) is True
def test_rational_irrational():
assert satask(Q.irrational(2)) is False
assert satask(Q.rational(2)) is True
assert satask(Q.irrational(pi)) is True
assert satask(Q.rational(pi)) is False
assert satask(Q.irrational(I)) is False
assert satask(Q.rational(I)) is False
assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.irrational(y) &
Q.rational(z)) is None
assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.rational(y) &
Q.rational(z)) is True
assert satask(Q.irrational(pi*x*y), Q.rational(x) & Q.rational(y)) is True
assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.irrational(y) &
Q.rational(z)) is None
assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.rational(y) &
Q.rational(z)) is True
assert satask(Q.irrational(pi + x + y), Q.rational(x) & Q.rational(y)) is True
assert satask(Q.irrational(x*y*z), Q.rational(x) & Q.rational(y) &
Q.rational(z)) is False
assert satask(Q.rational(x*y*z), Q.rational(x) & Q.rational(y) &
Q.rational(z)) is True
assert satask(Q.irrational(x + y + z), Q.rational(x) & Q.rational(y) &
Q.rational(z)) is False
assert satask(Q.rational(x + y + z), Q.rational(x) & Q.rational(y) &
Q.rational(z)) is True
def test_even_satask():
assert satask(Q.even(2)) is True
assert satask(Q.even(3)) is False
assert satask(Q.even(x*y), Q.even(x) & Q.odd(y)) is True
assert satask(Q.even(x*y), Q.even(x) & Q.integer(y)) is True
assert satask(Q.even(x*y), Q.even(x) & Q.even(y)) is True
assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
assert satask(Q.even(x*y), Q.even(x)) is None
assert satask(Q.even(x*y), Q.odd(x) & Q.integer(y)) is None
assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
assert satask(Q.even(abs(x)), Q.even(x)) is True
assert satask(Q.even(abs(x)), Q.odd(x)) is False
assert satask(Q.even(x), Q.even(abs(x))) is None # x could be complex
def test_odd_satask():
assert satask(Q.odd(2)) is False
assert satask(Q.odd(3)) is True
assert satask(Q.odd(x*y), Q.even(x) & Q.odd(y)) is False
assert satask(Q.odd(x*y), Q.even(x) & Q.integer(y)) is False
assert satask(Q.odd(x*y), Q.even(x) & Q.even(y)) is False
assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
assert satask(Q.odd(x*y), Q.even(x)) is None
assert satask(Q.odd(x*y), Q.odd(x) & Q.integer(y)) is None
assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
assert satask(Q.odd(abs(x)), Q.even(x)) is False
assert satask(Q.odd(abs(x)), Q.odd(x)) is True
assert satask(Q.odd(x), Q.odd(abs(x))) is None # x could be complex
def test_integer():
assert satask(Q.integer(1)) is True
assert satask(Q.integer(S.Half)) is False
assert satask(Q.integer(x + y), Q.integer(x) & Q.integer(y)) is True
assert satask(Q.integer(x + y), Q.integer(x)) is None
assert satask(Q.integer(x + y), Q.integer(x) & ~Q.integer(y)) is False
assert satask(Q.integer(x + y + z), Q.integer(x) & Q.integer(y) &
~Q.integer(z)) is False
assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y) &
~Q.integer(z)) is None
assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y)) is None
assert satask(Q.integer(x + y), Q.integer(x) & Q.irrational(y)) is False
assert satask(Q.integer(x*y), Q.integer(x) & Q.integer(y)) is True
assert satask(Q.integer(x*y), Q.integer(x)) is None
assert satask(Q.integer(x*y), Q.integer(x) & ~Q.integer(y)) is None
assert satask(Q.integer(x*y), Q.integer(x) & ~Q.rational(y)) is False
assert satask(Q.integer(x*y*z), Q.integer(x) & Q.integer(y) &
~Q.rational(z)) is False
assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y) &
~Q.rational(z)) is None
assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y)) is None
assert satask(Q.integer(x*y), Q.integer(x) & Q.irrational(y)) is False
def test_abs():
assert satask(Q.nonnegative(abs(x))) is True
assert satask(Q.positive(abs(x)), ~Q.zero(x)) is True
assert satask(Q.zero(x), ~Q.zero(abs(x))) is False
assert satask(Q.zero(x), Q.zero(abs(x))) is True
assert satask(Q.nonzero(x), ~Q.zero(abs(x))) is None # x could be complex
assert satask(Q.zero(abs(x)), Q.zero(x)) is True
def test_imaginary():
assert satask(Q.imaginary(2*I)) is True
assert satask(Q.imaginary(x*y), Q.imaginary(x)) is None
assert satask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True
assert satask(Q.imaginary(x), Q.real(x)) is False
assert satask(Q.imaginary(1)) is False
assert satask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False
assert satask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False
def test_real():
assert satask(Q.real(x*y), Q.real(x) & Q.real(y)) is True
assert satask(Q.real(x + y), Q.real(x) & Q.real(y)) is True
assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) is True
assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y)) is None
assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False
assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True
assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y)) is None
def test_pos_neg():
assert satask(~Q.positive(x), Q.negative(x)) is True
assert satask(~Q.negative(x), Q.positive(x)) is True
assert satask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True
assert satask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True
assert satask(Q.positive(x + y), Q.negative(x) & Q.negative(y)) is False
assert satask(Q.negative(x + y), Q.positive(x) & Q.positive(y)) is False
def test_pow_pos_neg():
assert satask(Q.nonnegative(x**2), Q.positive(x)) is True
assert satask(Q.nonpositive(x**2), Q.positive(x)) is False
assert satask(Q.positive(x**2), Q.positive(x)) is True
assert satask(Q.negative(x**2), Q.positive(x)) is False
assert satask(Q.real(x**2), Q.positive(x)) is True
assert satask(Q.nonnegative(x**2), Q.negative(x)) is True
assert satask(Q.nonpositive(x**2), Q.negative(x)) is False
assert satask(Q.positive(x**2), Q.negative(x)) is True
assert satask(Q.negative(x**2), Q.negative(x)) is False
assert satask(Q.real(x**2), Q.negative(x)) is True
assert satask(Q.nonnegative(x**2), Q.nonnegative(x)) is True
assert satask(Q.nonpositive(x**2), Q.nonnegative(x)) is None
assert satask(Q.positive(x**2), Q.nonnegative(x)) is None
assert satask(Q.negative(x**2), Q.nonnegative(x)) is False
assert satask(Q.real(x**2), Q.nonnegative(x)) is True
assert satask(Q.nonnegative(x**2), Q.nonpositive(x)) is True
assert satask(Q.nonpositive(x**2), Q.nonpositive(x)) is None
assert satask(Q.positive(x**2), Q.nonpositive(x)) is None
assert satask(Q.negative(x**2), Q.nonpositive(x)) is False
assert satask(Q.real(x**2), Q.nonpositive(x)) is True
assert satask(Q.nonnegative(x**3), Q.positive(x)) is True
assert satask(Q.nonpositive(x**3), Q.positive(x)) is False
assert satask(Q.positive(x**3), Q.positive(x)) is True
assert satask(Q.negative(x**3), Q.positive(x)) is False
assert satask(Q.real(x**3), Q.positive(x)) is True
assert satask(Q.nonnegative(x**3), Q.negative(x)) is False
assert satask(Q.nonpositive(x**3), Q.negative(x)) is True
assert satask(Q.positive(x**3), Q.negative(x)) is False
assert satask(Q.negative(x**3), Q.negative(x)) is True
assert satask(Q.real(x**3), Q.negative(x)) is True
assert satask(Q.nonnegative(x**3), Q.nonnegative(x)) is True
assert satask(Q.nonpositive(x**3), Q.nonnegative(x)) is None
assert satask(Q.positive(x**3), Q.nonnegative(x)) is None
assert satask(Q.negative(x**3), Q.nonnegative(x)) is False
assert satask(Q.real(x**3), Q.nonnegative(x)) is True
assert satask(Q.nonnegative(x**3), Q.nonpositive(x)) is None
assert satask(Q.nonpositive(x**3), Q.nonpositive(x)) is True
assert satask(Q.positive(x**3), Q.nonpositive(x)) is False
assert satask(Q.negative(x**3), Q.nonpositive(x)) is None
assert satask(Q.real(x**3), Q.nonpositive(x)) is True
# If x is zero, x**negative is not real.
assert satask(Q.nonnegative(x**-2), Q.nonpositive(x)) is None
assert satask(Q.nonpositive(x**-2), Q.nonpositive(x)) is None
assert satask(Q.positive(x**-2), Q.nonpositive(x)) is None
assert satask(Q.negative(x**-2), Q.nonpositive(x)) is None
assert satask(Q.real(x**-2), Q.nonpositive(x)) is None
# We could deduce things for negative powers if x is nonzero, but it
# isn't implemented yet.
def test_prime_composite():
assert satask(Q.prime(x), Q.composite(x)) is False
assert satask(Q.composite(x), Q.prime(x)) is False
assert satask(Q.composite(x), ~Q.prime(x)) is None
assert satask(Q.prime(x), ~Q.composite(x)) is None
# since 1 is neither prime nor composite the following should hold
assert satask(Q.prime(x), Q.integer(x) & Q.positive(x) & ~Q.composite(x)) is None
assert satask(Q.prime(2)) is True
assert satask(Q.prime(4)) is False
assert satask(Q.prime(1)) is False
assert satask(Q.composite(1)) is False
def test_extract_predargs():
props = CNF.from_prop(Q.zero(Abs(x*y)) & Q.zero(x*y))
assump = CNF.from_prop(Q.zero(x))
context = CNF.from_prop(Q.zero(y))
assert extract_predargs(props) == {Abs(x*y), x*y}
assert extract_predargs(props, assump) == {Abs(x*y), x*y, x}
assert extract_predargs(props, assump, context) == {Abs(x*y), x*y, x, y}
props = CNF.from_prop(Eq(x, y))
assump = CNF.from_prop(Gt(y, z))
assert extract_predargs(props, assump) == {x, y, z}
def test_get_relevant_clsfacts():
exprs = {Abs(x*y)}
exprs, facts = get_relevant_clsfacts(exprs)
assert exprs == {x*y}
assert facts.clauses == \
{frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.odd(Abs(x*y)), False),
Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.even(x*y), True),
Literal(Q.odd(Abs(x*y)), False)}),
frozenset({Literal(Q.positive(Abs(x*y)), False),
Literal(Q.zero(Abs(x*y)), False)})}
|