Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import whisper
|
4 |
+
import outetts
|
5 |
+
import numpy as np
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from outetts.wav_tokenizer.audio_codec import AudioCodec
|
8 |
+
from outetts.version.v2.prompt_processor import PromptProcessor
|
9 |
+
from outetts.version.playback import ModelOutput
|
10 |
+
|
11 |
+
model_path = hf_hub_download(
|
12 |
+
repo_id="Lyte/CiSiMi",
|
13 |
+
filename="unsloth.Q8_0.gguf",
|
14 |
+
)
|
15 |
+
|
16 |
+
model_config = outetts.GGUFModelConfig_v2(
|
17 |
+
model_path=model_path,
|
18 |
+
tokenizer_path="Lyte/CiSiMi",
|
19 |
+
)
|
20 |
+
|
21 |
+
interface = outetts.InterfaceGGUF(model_version="0.3", cfg=model_config)
|
22 |
+
audio_codec = AudioCodec()
|
23 |
+
prompt_processor = PromptProcessor("Lyte/Qwen-2.5-0.5B-S2S-test")
|
24 |
+
whisper_model = whisper.load_model("base.en")
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
gguf_model = interface.get_model()
|
27 |
+
|
28 |
+
def get_audio(tokens):
|
29 |
+
outputs = prompt_processor.extract_audio_from_tokens(tokens)
|
30 |
+
if not outputs:
|
31 |
+
return None
|
32 |
+
audio_tensor = audio_codec.decode(torch.tensor([[outputs]], dtype=torch.int64).to(device))
|
33 |
+
return ModelOutput(audio_tensor, audio_codec.sr)
|
34 |
+
|
35 |
+
def extract_text_from_tts_output(tts_output):
|
36 |
+
text = ""
|
37 |
+
for line in tts_output.strip().split('\n'):
|
38 |
+
if '<|audio_end|>' in line or '<|im_end|>' in line:
|
39 |
+
continue
|
40 |
+
if '<|' in line:
|
41 |
+
word = line.split('<|')[0].strip()
|
42 |
+
if word:
|
43 |
+
text += word + " "
|
44 |
+
else:
|
45 |
+
text += line.strip() + " "
|
46 |
+
return text.strip()
|
47 |
+
|
48 |
+
def process_input(audio_input, text_input):
|
49 |
+
if audio_input is None and (text_input is None or text_input.strip() == ""):
|
50 |
+
return "Please provide either audio or text input.", None
|
51 |
+
|
52 |
+
if audio_input is not None:
|
53 |
+
return process_audio(audio_input)
|
54 |
+
else:
|
55 |
+
return process_text(text_input)
|
56 |
+
|
57 |
+
def process_audio(audio):
|
58 |
+
result = whisper_model.transcribe(audio)
|
59 |
+
instruction = result["text"]
|
60 |
+
return generate_response(instruction)
|
61 |
+
|
62 |
+
def process_text(text):
|
63 |
+
instruction = text
|
64 |
+
return generate_response(instruction)
|
65 |
+
|
66 |
+
def generate_response(instruction):
|
67 |
+
prompt = f"<|im_start|>\nInstructions:\n{instruction}\n<|im_end|>\nAnswer:\n"
|
68 |
+
gen_cfg = outetts.GenerationConfig(
|
69 |
+
text=prompt,
|
70 |
+
temperature=0.6,
|
71 |
+
repetition_penalty=1.1,
|
72 |
+
max_length=4096,
|
73 |
+
speaker=None
|
74 |
+
)
|
75 |
+
|
76 |
+
input_ids = prompt_processor.tokenizer.encode(prompt)
|
77 |
+
tokens = gguf_model.generate(input_ids, gen_cfg)
|
78 |
+
|
79 |
+
output_text = prompt_processor.tokenizer.decode(tokens, skip_special_tokens=False)
|
80 |
+
|
81 |
+
if "<|audio_end|>" in output_text:
|
82 |
+
first_part, _, _ = output_text.partition("<|audio_end|>")
|
83 |
+
|
84 |
+
if "<|audio_end|>\n<|im_end|>\n" not in first_part:
|
85 |
+
first_part += "<|audio_end|>\n<|im_end|>\n"
|
86 |
+
|
87 |
+
extracted_text = extract_text_from_tts_output(first_part)
|
88 |
+
|
89 |
+
audio_start_pos = first_part.find("<|audio_start|>\n") + len("<|audio_start|>\n")
|
90 |
+
audio_end_pos = first_part.find("<|audio_end|>\n<|im_end|>\n") + len("<|audio_end|>\n<|im_end|>\n")
|
91 |
+
|
92 |
+
if audio_start_pos >= len("<|audio_start|>\n") and audio_end_pos > audio_start_pos:
|
93 |
+
audio_tokens_text = first_part[audio_start_pos:audio_end_pos]
|
94 |
+
|
95 |
+
audio_tokens = prompt_processor.tokenizer.encode(audio_tokens_text)
|
96 |
+
|
97 |
+
#print(f"Decoding audio with {len(audio_tokens)} tokens")
|
98 |
+
#print(f"audio_tokens: {audio_tokens_text}")
|
99 |
+
|
100 |
+
audio_output = get_audio(audio_tokens)
|
101 |
+
|
102 |
+
if audio_output is not None and hasattr(audio_output, 'audio') and audio_output.audio is not None:
|
103 |
+
audio_numpy = audio_output.audio.cpu().numpy()
|
104 |
+
if audio_numpy.ndim > 1:
|
105 |
+
audio_numpy = audio_numpy.squeeze()
|
106 |
+
|
107 |
+
#display(Audio(data=audio_numpy, rate=audio_output.sr, autoplay=True))
|
108 |
+
return extracted_text, (audio_output.sr, audio_numpy)
|
109 |
+
|
110 |
+
return output_text, None
|
111 |
+
|
112 |
+
iface = gr.Interface(
|
113 |
+
fn=process_input,
|
114 |
+
inputs=[
|
115 |
+
gr.Audio(type="filepath", label="Audio Input (Optional)"),
|
116 |
+
gr.Textbox(label="Text Input (Optional)")
|
117 |
+
],
|
118 |
+
outputs=[
|
119 |
+
gr.Textbox(label="Response Text"),
|
120 |
+
gr.Audio(type="numpy", label="Generated Speech")
|
121 |
+
],
|
122 |
+
title="CiSiMi @ Home Demo",
|
123 |
+
description="Me: Mom can we have CSM locally! Mom: we have CSM locally. CSM locally:",
|
124 |
+
examples=[
|
125 |
+
[None, "Hello, what are you capable of?"],
|
126 |
+
[None, "Explain to me how gravity works!"]
|
127 |
+
]
|
128 |
+
)
|
129 |
+
|
130 |
+
iface.launch(debug=True)
|