Spaces:
Running
Running
Liu Yiwen
commited on
Commit
·
266b4a6
1
Parent(s):
4570f48
删除了一些调试文件
Browse files- data.py +0 -25
- flatten_ndarray.py +0 -30
- line_plot.py +0 -44
- tempCodeRunnerFile.py +0 -4
- your_script.py +0 -47
data.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import random
|
5 |
-
from gradio_datetimerange import DateTimeRange
|
6 |
-
from datetime import datetime, timedelta
|
7 |
-
now = datetime.now()
|
8 |
-
|
9 |
-
df = pd.DataFrame({
|
10 |
-
'time': [now - timedelta(minutes=5*i) for i in range(25)],
|
11 |
-
'price': np.random.randint(100, 1000, 25),
|
12 |
-
'origin': [random.choice(["DFW", "DAL", "HOU"]) for _ in range(25)],
|
13 |
-
'destination': [random.choice(["JFK", "LGA", "EWR"]) for _ in range(25)],
|
14 |
-
})
|
15 |
-
|
16 |
-
if __name__ == "__main__":
|
17 |
-
with gr.Blocks() as demo:
|
18 |
-
daterange = DateTimeRange(["now - 24h", "now"])
|
19 |
-
plot1 = gr.LinePlot(df, x="time", y="price")
|
20 |
-
plot2 = gr.LinePlot(df, x="time", y="price", color="origin")
|
21 |
-
daterange.bind([plot1, plot2])
|
22 |
-
|
23 |
-
demo.launch(share=True)
|
24 |
-
print(type(DateTimeRange))
|
25 |
-
print(type(gr.LinePlot))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flatten_ndarray.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
def flatten_ndarray_column(df, column_name):
|
5 |
-
def flatten_ndarray(ndarray):
|
6 |
-
if isinstance(ndarray, np.ndarray) and ndarray.dtype == 'O':
|
7 |
-
return np.concatenate([flatten_ndarray(subarray) for subarray in ndarray])
|
8 |
-
elif isinstance(ndarray, np.ndarray) and ndarray.ndim == 1:
|
9 |
-
return np.expand_dims(ndarray, axis=0)
|
10 |
-
return ndarray
|
11 |
-
|
12 |
-
flattened_data = df[column_name].apply(flatten_ndarray)
|
13 |
-
max_length = max(flattened_data.apply(len))
|
14 |
-
|
15 |
-
for i in range(max_length):
|
16 |
-
df[f'{column_name}_{i}'] = flattened_data.apply(lambda x: x[i] if i < len(x) else np.nan)
|
17 |
-
|
18 |
-
return df
|
19 |
-
|
20 |
-
# 示例用法
|
21 |
-
if __name__ == "__main__":
|
22 |
-
# 创建示例 DataFrame
|
23 |
-
data = {
|
24 |
-
'target': [np.array([np.array([1, 2]), np.array([3, 4])]), np.array([5, 6, 7])]
|
25 |
-
}
|
26 |
-
df = pd.DataFrame(data)
|
27 |
-
|
28 |
-
# 拆分 target 列中的嵌套 ndarray
|
29 |
-
df = flatten_ndarray_column(df, 'target')
|
30 |
-
print(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
line_plot.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from fastapi import FastAPI
|
3 |
-
import plotly.graph_objects as go
|
4 |
-
import gradio as gr
|
5 |
-
import uvicorn
|
6 |
-
|
7 |
-
def create_plot(df):
|
8 |
-
fig = go.Figure()
|
9 |
-
for column in df.columns[1:]:
|
10 |
-
fig.add_trace(go.Scatter(x=df[df.columns[0]], y=df[column], mode='lines', name=column))
|
11 |
-
|
12 |
-
# 配置图例
|
13 |
-
fig.update_layout(
|
14 |
-
legend=dict(
|
15 |
-
title="Variables",
|
16 |
-
orientation="h",
|
17 |
-
yanchor="bottom",
|
18 |
-
y=1.02,
|
19 |
-
xanchor="right",
|
20 |
-
x=1
|
21 |
-
),
|
22 |
-
xaxis_title='Time',
|
23 |
-
yaxis_title='Values'
|
24 |
-
)
|
25 |
-
return fig
|
26 |
-
|
27 |
-
# 创建Gradio界面
|
28 |
-
demo = gr.Blocks()
|
29 |
-
with demo:
|
30 |
-
# 示例数据
|
31 |
-
data = {
|
32 |
-
'time': pd.date_range(start='2023-01-01', periods=6, freq='D'),
|
33 |
-
'y1': [0, 1, 4, 9, 16, 25],
|
34 |
-
'y2': [0, 1, 2, 3, 4, 5]
|
35 |
-
}
|
36 |
-
df = pd.DataFrame(data)
|
37 |
-
plot = create_plot(df)
|
38 |
-
gr.Plot(plot)
|
39 |
-
|
40 |
-
# 运行Gradio界面
|
41 |
-
if __name__ == "__main__":
|
42 |
-
app = FastAPI()
|
43 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
44 |
-
uvicorn.run(app, host="127.0.0.1", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tempCodeRunnerFile.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
if __name__ == "__main__":
|
2 |
-
# app = FastAPI()
|
3 |
-
# app = gr.mount_gradio_app(app, demo, path="/")
|
4 |
-
# uvicorn.run(app, host="127.0.0.1", port=7860)
|
|
|
|
|
|
|
|
|
|
your_script.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import altair as alt
|
2 |
-
from fastapi import FastAPI
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
import uvicorn
|
7 |
-
from vega_datasets import data
|
8 |
-
|
9 |
-
|
10 |
-
def plot(v, a):
|
11 |
-
g = 9.81
|
12 |
-
theta = a / 180 * 3.14
|
13 |
-
tmax = ((2 * v) * np.sin(theta)) / g
|
14 |
-
timemat = tmax * np.linspace(0, 1, 40)
|
15 |
-
|
16 |
-
x = (v * timemat) * np.cos(theta)
|
17 |
-
y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat**2))
|
18 |
-
df = pd.DataFrame({"x": x, "y": y})
|
19 |
-
return df
|
20 |
-
|
21 |
-
demo = gr.Blocks()
|
22 |
-
|
23 |
-
with demo:
|
24 |
-
gr.Markdown(
|
25 |
-
r"Let's do some kinematics! Choose the speed and angle to see the trajectory. Remember that the range $R = v_0^2 \cdot \frac{\sin(2\theta)}{g}$"
|
26 |
-
)
|
27 |
-
|
28 |
-
with gr.Row():
|
29 |
-
speed = gr.Slider(1, 30, 25, label="Speed")
|
30 |
-
angle = gr.Slider(0, 90, 45, label="Angle")
|
31 |
-
output = gr.LinePlot(
|
32 |
-
x="x",
|
33 |
-
y="y",
|
34 |
-
overlay_point=True,
|
35 |
-
tooltip=["x", "y"],
|
36 |
-
x_lim=[0, 100],
|
37 |
-
y_lim=[0, 60],
|
38 |
-
width=350,
|
39 |
-
height=300,
|
40 |
-
)
|
41 |
-
btn = gr.Button(value="Run")
|
42 |
-
btn.click(plot, [speed, angle], output)
|
43 |
-
|
44 |
-
if __name__ == "__main__":
|
45 |
-
app = FastAPI()
|
46 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
47 |
-
uvicorn.run(app, host="127.0.0.1", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|