haritsahm
commited on
Commit
·
cc64157
1
Parent(s):
861e32a
Add main deployment script
Browse files
main.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
from models import phc_models
|
| 10 |
+
from utils import utils
|
| 11 |
+
|
| 12 |
+
BILATERIAL_WEIGHT = 'weights/phresnet18_cbis2views.pt'
|
| 13 |
+
BILATERAL_MODEL = phc_models.PHCResNet18(
|
| 14 |
+
channels=2, n=2, num_classes=1, visualize=True)
|
| 15 |
+
BILATERAL_MODEL.add_top_blocks(num_classes=1)
|
| 16 |
+
BILATERAL_MODEL.load_state_dict(torch.load(
|
| 17 |
+
BILATERIAL_WEIGHT, map_location='cpu'))
|
| 18 |
+
BILATERAL_MODEL = BILATERAL_MODEL.to('cpu')
|
| 19 |
+
BILATERAL_MODEL.eval()
|
| 20 |
+
|
| 21 |
+
OUTPUT_GALLERY = gr.Gallery(
|
| 22 |
+
label='Highlighted Area').style(grid=[2], height='auto')
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def predict_bilateral(file: str) -> List:
|
| 26 |
+
"""Predict Bilateral Mammography.
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
file : TemporaryFileWrapper
|
| 31 |
+
TemporaryFile object for the uploaded file
|
| 32 |
+
|
| 33 |
+
Returns
|
| 34 |
+
-------
|
| 35 |
+
List[List, Dict]
|
| 36 |
+
List of objects that will be used to display the result
|
| 37 |
+
"""
|
| 38 |
+
displays_imgs = []
|
| 39 |
+
|
| 40 |
+
image = np.array(Image.open(file.name))/257
|
| 41 |
+
image = np.reshape(image, (2, image.shape[0]//2, image.shape[1]))
|
| 42 |
+
|
| 43 |
+
im_h, im_w = image[0].shape[:2]
|
| 44 |
+
|
| 45 |
+
image_t = torch.from_numpy(image)
|
| 46 |
+
image_t = image_t.unsqueeze(0) # Add batch dimension
|
| 47 |
+
|
| 48 |
+
out, _, out_refiner = BILATERAL_MODEL(image_t)
|
| 49 |
+
|
| 50 |
+
out_refiner = utils.mean_activations(out_refiner).numpy()
|
| 51 |
+
|
| 52 |
+
probability = torch.sigmoid(out).detach().cpu().item()
|
| 53 |
+
label_name = 'Malignant' if probability > 0.5 else 'Normal/Benign'
|
| 54 |
+
lebels_dict = {label_name: probability}
|
| 55 |
+
|
| 56 |
+
refined_view_norm = cv2.normalize(
|
| 57 |
+
out_refiner, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 58 |
+
refined_view = cv2.applyColorMap(refined_view_norm, cv2.COLORMAP_JET)
|
| 59 |
+
refined_view = cv2.resize(
|
| 60 |
+
refined_view, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
|
| 61 |
+
|
| 62 |
+
image0_colored = cv2.normalize(
|
| 63 |
+
image[0], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 64 |
+
image0_colored = cv2.cvtColor(image0_colored, cv2.COLOR_GRAY2RGB)
|
| 65 |
+
image1_colored = cv2.normalize(
|
| 66 |
+
image[1], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 67 |
+
image1_colored = cv2.cvtColor(image1_colored, cv2.COLOR_GRAY2RGB)
|
| 68 |
+
|
| 69 |
+
heatmap0_overlay = cv2.addWeighted(
|
| 70 |
+
image0_colored, 1.0, refined_view, 0.5, 0)
|
| 71 |
+
heatmap1_overlay = cv2.addWeighted(
|
| 72 |
+
image1_colored, 1.0, refined_view, 0.5, 0)
|
| 73 |
+
|
| 74 |
+
displays_imgs += [(image0_colored, 'CC'), (image1_colored, 'MLO')]
|
| 75 |
+
|
| 76 |
+
displays_imgs.append((heatmap0_overlay, 'CC Interest Area'))
|
| 77 |
+
displays_imgs.append((heatmap1_overlay, 'MLO Interest Area'))
|
| 78 |
+
|
| 79 |
+
return displays_imgs, lebels_dict
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def run():
|
| 83 |
+
"""Run Gradio App."""
|
| 84 |
+
demo = gr.Interface(
|
| 85 |
+
fn=predict_bilateral,
|
| 86 |
+
inputs=gr.File(file_count='single', file_types=['.png']),
|
| 87 |
+
outputs=[OUTPUT_GALLERY, gr.Label(label='Cancer Type')]
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
demo.launch(server_name='0.0.0.0', server_port=7860)
|
| 91 |
+
demo.close()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if __name__ == '__main__':
|
| 95 |
+
run()
|