Upload 7 files
Browse files- README.md +6 -5
- app.py +265 -0
- ham1.ckpt +3 -0
- index.html +50 -0
- requirements.txt +63 -0
- resnet18.py +129 -0
- style.css +83 -0
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Bodypartxr
|
| 3 |
+
emoji: 🏆
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.47.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: unknown
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from torchvision.transforms import transforms
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Optional
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import os
|
| 8 |
+
from utils import page_utils
|
| 9 |
+
|
| 10 |
+
class BasicBlock(nn.Module):
|
| 11 |
+
"""ResNet Basic Block.
|
| 12 |
+
|
| 13 |
+
Parameters
|
| 14 |
+
----------
|
| 15 |
+
in_channels : int
|
| 16 |
+
Number of input channels
|
| 17 |
+
out_channels : int
|
| 18 |
+
Number of output channels
|
| 19 |
+
stride : int, optional
|
| 20 |
+
Convolution stride size, by default 1
|
| 21 |
+
identity_downsample : Optional[torch.nn.Module], optional
|
| 22 |
+
Downsampling layer, by default None
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self,
|
| 26 |
+
in_channels: int,
|
| 27 |
+
out_channels: int,
|
| 28 |
+
stride: int = 1,
|
| 29 |
+
identity_downsample: Optional[torch.nn.Module] = None):
|
| 30 |
+
super(BasicBlock, self).__init__()
|
| 31 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 32 |
+
out_channels,
|
| 33 |
+
kernel_size = 3,
|
| 34 |
+
stride = stride,
|
| 35 |
+
padding = 1)
|
| 36 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 37 |
+
self.relu = nn.ReLU()
|
| 38 |
+
self.conv2 = nn.Conv2d(out_channels,
|
| 39 |
+
out_channels,
|
| 40 |
+
kernel_size = 3,
|
| 41 |
+
stride = 1,
|
| 42 |
+
padding = 1)
|
| 43 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 44 |
+
self.identity_downsample = identity_downsample
|
| 45 |
+
|
| 46 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 47 |
+
"""Apply forward computation."""
|
| 48 |
+
identity = x
|
| 49 |
+
x = self.conv1(x)
|
| 50 |
+
x = self.bn1(x)
|
| 51 |
+
x = self.relu(x)
|
| 52 |
+
x = self.conv2(x)
|
| 53 |
+
x = self.bn2(x)
|
| 54 |
+
|
| 55 |
+
# Apply an operation to the identity output.
|
| 56 |
+
# Useful to reduce the layer size and match from conv2 output
|
| 57 |
+
if self.identity_downsample is not None:
|
| 58 |
+
identity = self.identity_downsample(identity)
|
| 59 |
+
x += identity
|
| 60 |
+
x = self.relu(x)
|
| 61 |
+
return x
|
| 62 |
+
|
| 63 |
+
class ResNet18(nn.Module):
|
| 64 |
+
"""Construct ResNet-18 Model.
|
| 65 |
+
|
| 66 |
+
Parameters
|
| 67 |
+
----------
|
| 68 |
+
input_channels : int
|
| 69 |
+
Number of input channels
|
| 70 |
+
num_classes : int
|
| 71 |
+
Number of class outputs
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(self, input_channels, num_classes):
|
| 75 |
+
|
| 76 |
+
super(ResNet18, self).__init__()
|
| 77 |
+
self.conv1 = nn.Conv2d(input_channels,
|
| 78 |
+
64, kernel_size = 7,
|
| 79 |
+
stride = 2, padding=3)
|
| 80 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 81 |
+
self.relu = nn.ReLU()
|
| 82 |
+
self.maxpool = nn.MaxPool2d(kernel_size = 3,
|
| 83 |
+
stride = 2,
|
| 84 |
+
padding = 1)
|
| 85 |
+
|
| 86 |
+
self.layer1 = self._make_layer(64, 64, stride = 1)
|
| 87 |
+
self.layer2 = self._make_layer(64, 128, stride = 2)
|
| 88 |
+
self.layer3 = self._make_layer(128, 256, stride = 2)
|
| 89 |
+
self.layer4 = self._make_layer(256, 512, stride = 2)
|
| 90 |
+
|
| 91 |
+
# Last layers
|
| 92 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 93 |
+
self.fc = nn.Linear(512, num_classes)
|
| 94 |
+
|
| 95 |
+
def identity_downsample(self, in_channels: int, out_channels: int) -> nn.Module:
|
| 96 |
+
"""Downsampling block to reduce the feature sizes."""
|
| 97 |
+
return nn.Sequential(
|
| 98 |
+
nn.Conv2d(in_channels,
|
| 99 |
+
out_channels,
|
| 100 |
+
kernel_size = 3,
|
| 101 |
+
stride = 2,
|
| 102 |
+
padding = 1),
|
| 103 |
+
nn.BatchNorm2d(out_channels)
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def _make_layer(self, in_channels: int, out_channels: int, stride: int) -> nn.Module:
|
| 107 |
+
"""Create sequential basic block."""
|
| 108 |
+
identity_downsample = None
|
| 109 |
+
|
| 110 |
+
# Add downsampling function
|
| 111 |
+
if stride != 1:
|
| 112 |
+
identity_downsample = self.identity_downsample(in_channels, out_channels)
|
| 113 |
+
|
| 114 |
+
return nn.Sequential(
|
| 115 |
+
BasicBlock(in_channels, out_channels, identity_downsample=identity_downsample, stride=stride),
|
| 116 |
+
BasicBlock(out_channels, out_channels)
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 120 |
+
x = self.conv1(x)
|
| 121 |
+
x = self.bn1(x)
|
| 122 |
+
x = self.relu(x)
|
| 123 |
+
x = self.maxpool(x)
|
| 124 |
+
|
| 125 |
+
x = self.layer1(x)
|
| 126 |
+
x = self.layer2(x)
|
| 127 |
+
x = self.layer3(x)
|
| 128 |
+
x = self.layer4(x)
|
| 129 |
+
|
| 130 |
+
x = self.avgpool(x)
|
| 131 |
+
x = x.view(x.shape[0], -1)
|
| 132 |
+
x = self.fc(x)
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
model = ResNet18(1, 7)
|
| 136 |
+
|
| 137 |
+
checkpoint = torch.load('ham1.ckpt', map_location=torch.device('cpu'))
|
| 138 |
+
|
| 139 |
+
# The state dict will contains net.layer_name
|
| 140 |
+
# Our model doesn't contains `net.` so we have to rename it
|
| 141 |
+
state_dict = checkpoint['state_dict']
|
| 142 |
+
for key in list(state_dict.keys()):
|
| 143 |
+
if 'net.' in key:
|
| 144 |
+
state_dict[key.replace('net.', '')] = state_dict[key]
|
| 145 |
+
del state_dict[key]
|
| 146 |
+
|
| 147 |
+
model.load_state_dict(state_dict)
|
| 148 |
+
model.eval()
|
| 149 |
+
|
| 150 |
+
class_names = ['akk', 'bcc', 'bkl', 'df', 'mel','nv','vasc']
|
| 151 |
+
class_names.sort()
|
| 152 |
+
|
| 153 |
+
examples_dir = "sample"
|
| 154 |
+
|
| 155 |
+
transformation_pipeline = transforms.Compose([
|
| 156 |
+
transforms.ToPILImage(),
|
| 157 |
+
transforms.Grayscale(num_output_channels=1),
|
| 158 |
+
transforms.CenterCrop((224, 224)),
|
| 159 |
+
transforms.ToTensor(),
|
| 160 |
+
transforms.Normalize(mean=[0.485], std=[0.229])
|
| 161 |
+
])
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def preprocess_image(image: np.ndarray):
|
| 165 |
+
"""Preprocess the input image.
|
| 166 |
+
|
| 167 |
+
Note that the input image is in RGB mode.
|
| 168 |
+
|
| 169 |
+
Parameters
|
| 170 |
+
----------
|
| 171 |
+
image: np.ndarray
|
| 172 |
+
Input image from callback.
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
image = transformation_pipeline(image)
|
| 176 |
+
image = torch.unsqueeze(image, 0)
|
| 177 |
+
|
| 178 |
+
return image
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def image_classifier(inp):
|
| 182 |
+
"""Image Classifier Function.
|
| 183 |
+
|
| 184 |
+
Parameters
|
| 185 |
+
----------
|
| 186 |
+
inp: Optional[np.ndarray] = None
|
| 187 |
+
Input image from callback
|
| 188 |
+
|
| 189 |
+
Returns
|
| 190 |
+
-------
|
| 191 |
+
Dict
|
| 192 |
+
A dictionary class names and its probability
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
# If input not valid, return dummy data or raise error
|
| 196 |
+
if inp is None:
|
| 197 |
+
return {'cat': 0.3, 'dog': 0.7}
|
| 198 |
+
|
| 199 |
+
# preprocess
|
| 200 |
+
image = preprocess_image(inp)
|
| 201 |
+
image = image.to(dtype=torch.float32)
|
| 202 |
+
|
| 203 |
+
# inference
|
| 204 |
+
result = model(image)
|
| 205 |
+
|
| 206 |
+
# postprocess
|
| 207 |
+
result = torch.nn.functional.softmax(result, dim=1) # apply softmax
|
| 208 |
+
result = result[0].detach().numpy().tolist() # take the first batch
|
| 209 |
+
labeled_result = {name:score for name, score in zip(class_names, result)}
|
| 210 |
+
|
| 211 |
+
return labeled_result
|
| 212 |
+
|
| 213 |
+
# gradio code block for input and output
|
| 214 |
+
with gr.Blocks() as app:
|
| 215 |
+
gr.Markdown("# Skin Cancer Classification")
|
| 216 |
+
|
| 217 |
+
with open('index.html', encoding="utf-8") as f:
|
| 218 |
+
description = f.read()
|
| 219 |
+
|
| 220 |
+
# gradio code block for input and output
|
| 221 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue=page_utils.KALBE_THEME_COLOR, secondary_hue=page_utils.KALBE_THEME_COLOR).set(
|
| 222 |
+
button_primary_background_fill="*primary_600",
|
| 223 |
+
button_primary_background_fill_hover="*primary_500",
|
| 224 |
+
button_primary_text_color="white",
|
| 225 |
+
)) as app:
|
| 226 |
+
with gr.Column():
|
| 227 |
+
gr.HTML(description)
|
| 228 |
+
|
| 229 |
+
with gr.Row():
|
| 230 |
+
with gr.Column():
|
| 231 |
+
inp_img = gr.Image()
|
| 232 |
+
with gr.Row():
|
| 233 |
+
clear_btn = gr.Button(value="Clear")
|
| 234 |
+
process_btn = gr.Button(value="Process", variant="primary")
|
| 235 |
+
with gr.Column():
|
| 236 |
+
out_txt = gr.Label(label="Probabilities", num_top_classes=3)
|
| 237 |
+
|
| 238 |
+
process_btn.click(image_classifier, inputs=inp_img, outputs=out_txt)
|
| 239 |
+
clear_btn.click(lambda:(
|
| 240 |
+
gr.update(value=None),
|
| 241 |
+
gr.update(value=None)
|
| 242 |
+
),
|
| 243 |
+
inputs=None,
|
| 244 |
+
outputs=[inp_img, out_txt])
|
| 245 |
+
|
| 246 |
+
gr.Markdown("## Image Examples")
|
| 247 |
+
gr.Examples(
|
| 248 |
+
examples=[os.path.join(examples_dir, "ISIC_0000108_downsampled.jpeg"),
|
| 249 |
+
os.path.join(examples_dir, "ISIC_0000142_downsampled.jpeg"),
|
| 250 |
+
os.path.join(examples_dir, "ISIC_0012792_downsampled.jpeg"),
|
| 251 |
+
os.path.join(examples_dir, "ISIC_0024452.jpeg"),
|
| 252 |
+
os.path.join(examples_dir, "ISIC_0025957.jpeg"),
|
| 253 |
+
os.path.join(examples_dir, "ISIC_0026876.jpeg"),
|
| 254 |
+
os.path.join(examples_dir, "ISIC_0027385.jpeg"),
|
| 255 |
+
os.path.join(examples_dir, "ISIC_0030956.jpeg"),
|
| 256 |
+
],
|
| 257 |
+
inputs=inp_img,
|
| 258 |
+
outputs=out_txt,
|
| 259 |
+
fn=image_classifier,
|
| 260 |
+
cache_examples=False,
|
| 261 |
+
)
|
| 262 |
+
gr.Markdown(line_breaks=True, value='Author: Jason Adrian ([email protected]) <div class="row"><a href="https://github.com/jasonadriann?tab=repositories"><img alt="GitHub" src="https://img.shields.io/badge/Jason%20Adrian-000000?logo=github"> </div>')
|
| 263 |
+
|
| 264 |
+
# demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
|
| 265 |
+
app.launch(share=True)
|
ham1.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b07ac05dfb7cb1b0f0d57ad5baf923acd0d4da5352588ae492f4faa970e2833
|
| 3 |
+
size 150928119
|
index.html
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html>
|
| 3 |
+
<head>
|
| 4 |
+
<link rel="stylesheet" href="file/style.css" />
|
| 5 |
+
<link rel="preconnect" href="https://fonts.googleapis.com" />
|
| 6 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
|
| 7 |
+
<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
|
| 8 |
+
<title><strong>Body Part Classification</strong></title>
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1 class="title"><strong> Body Part Classification</strong></h1>
|
| 13 |
+
<h2 class="subtitle"><strong>Kalbe Digital Lab</strong></h2>
|
| 14 |
+
<section class="overview">
|
| 15 |
+
<div class="grid-container">
|
| 16 |
+
<h3 class="overview-heading"><span class="vl">Overview</span></h3>
|
| 17 |
+
<p class="overview-content">
|
| 18 |
+
The Body Part Classification program serves the critical purpose of categorizing body parts from DICOM x-ray scans into five distinct classes: abdominal, adult chest, pediatric chest, spine, and others. This program trained using ResNet18 model.
|
| 19 |
+
</p>
|
| 20 |
+
</div>
|
| 21 |
+
<div class="grid-container">
|
| 22 |
+
<h3 class="overview-heading"><span class="vl">Dataset</span></h3>
|
| 23 |
+
<div>
|
| 24 |
+
<p class="overview-content">
|
| 25 |
+
The program has been meticulously trained on a robust and diverse dataset, specifically <a href="https://vindr.ai/datasets/bodypartxr" target="_blank">VinDrBodyPartXR Dataset.</a>.
|
| 26 |
+
<br/>
|
| 27 |
+
This dataset is introduced by Vingroup of Big Data Institute which include 16,093 x-ray images that are collected and manually annotated. It is a highly valuable resource that has been instrumental in the training of our model.
|
| 28 |
+
</p>
|
| 29 |
+
<ul>
|
| 30 |
+
<li>Objective: Body Part Identification</li>
|
| 31 |
+
<li>Task: Classification</li>
|
| 32 |
+
<li>Modality: Grayscale Images</li>
|
| 33 |
+
</ul>
|
| 34 |
+
</div>
|
| 35 |
+
</div>
|
| 36 |
+
<div class="grid-container">
|
| 37 |
+
<h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
|
| 38 |
+
<div>
|
| 39 |
+
<p class="overview-content">
|
| 40 |
+
The model architecture of ResNet18 to train x-ray images for classifying body part.
|
| 41 |
+
</p>
|
| 42 |
+
<img class="content-image" src="file/figures/ResNet-18.png" alt="model-architecture" width="425" height="115" style="vertical-align:middle" />
|
| 43 |
+
</div>
|
| 44 |
+
</div>
|
| 45 |
+
</section>
|
| 46 |
+
<h3 class="overview-heading"><span class="vl">Demo</span></h3>
|
| 47 |
+
<p class="overview-content">Please select or upload a body part x-ray scan image to see the capabilities of body part classification with this model</p>
|
| 48 |
+
</div>
|
| 49 |
+
</body>
|
| 50 |
+
</html>
|
requirements.txt
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
altair==5.1.2
|
| 3 |
+
annotated-types==0.6.0
|
| 4 |
+
anyio==3.7.1
|
| 5 |
+
attrs==23.1.0
|
| 6 |
+
certifi==2023.7.22
|
| 7 |
+
charset-normalizer==3.3.0
|
| 8 |
+
click==8.1.7
|
| 9 |
+
colorama==0.4.6
|
| 10 |
+
contourpy==1.1.1
|
| 11 |
+
cycler==0.12.1
|
| 12 |
+
exceptiongroup==1.1.3
|
| 13 |
+
fastapi==0.103.2
|
| 14 |
+
ffmpy==0.3.1
|
| 15 |
+
filelock==3.12.4
|
| 16 |
+
fonttools==4.43.1
|
| 17 |
+
fsspec==2023.9.2
|
| 18 |
+
gradio==3.47.1
|
| 19 |
+
gradio_client==0.6.0
|
| 20 |
+
h11==0.14.0
|
| 21 |
+
httpcore==0.18.0
|
| 22 |
+
httpx==0.25.0
|
| 23 |
+
huggingface-hub==0.17.3
|
| 24 |
+
idna==3.4
|
| 25 |
+
importlib-resources==6.1.0
|
| 26 |
+
Jinja2==3.1.2
|
| 27 |
+
jsonschema==4.19.1
|
| 28 |
+
jsonschema-specifications==2023.7.1
|
| 29 |
+
kiwisolver==1.4.5
|
| 30 |
+
MarkupSafe==2.1.3
|
| 31 |
+
matplotlib==3.8.0
|
| 32 |
+
mpmath==1.3.0
|
| 33 |
+
networkx==3.1
|
| 34 |
+
numpy==1.26.0
|
| 35 |
+
orjson==3.9.7
|
| 36 |
+
packaging==23.2
|
| 37 |
+
pandas==2.1.1
|
| 38 |
+
Pillow==10.0.1
|
| 39 |
+
pydantic==2.4.2
|
| 40 |
+
pydantic_core==2.10.1
|
| 41 |
+
pydub==0.25.1
|
| 42 |
+
pyparsing==3.1.1
|
| 43 |
+
python-dateutil==2.8.2
|
| 44 |
+
python-multipart==0.0.6
|
| 45 |
+
pytz==2023.3.post1
|
| 46 |
+
PyYAML==6.0.1
|
| 47 |
+
referencing==0.30.2
|
| 48 |
+
requests==2.31.0
|
| 49 |
+
rpds-py==0.10.4
|
| 50 |
+
semantic-version==2.10.0
|
| 51 |
+
six==1.16.0
|
| 52 |
+
sniffio==1.3.0
|
| 53 |
+
starlette==0.27.0
|
| 54 |
+
sympy==1.12
|
| 55 |
+
toolz==0.12.0
|
| 56 |
+
torch==2.1.0
|
| 57 |
+
torchvision==0.16.0
|
| 58 |
+
tqdm==4.66.1
|
| 59 |
+
typing_extensions==4.8.0
|
| 60 |
+
tzdata==2023.3
|
| 61 |
+
urllib3==2.0.6
|
| 62 |
+
uvicorn==0.23.2
|
| 63 |
+
websockets==11.0.3
|
resnet18.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
class BasicBlock(nn.Module):
|
| 7 |
+
"""ResNet Basic Block.
|
| 8 |
+
|
| 9 |
+
Parameters
|
| 10 |
+
----------
|
| 11 |
+
in_channels : int
|
| 12 |
+
Number of input channels
|
| 13 |
+
out_channels : int
|
| 14 |
+
Number of output channels
|
| 15 |
+
stride : int, optional
|
| 16 |
+
Convolution stride size, by default 1
|
| 17 |
+
identity_downsample : Optional[torch.nn.Module], optional
|
| 18 |
+
Downsampling layer, by default None
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self,
|
| 22 |
+
in_channels: int,
|
| 23 |
+
out_channels: int,
|
| 24 |
+
stride: int = 1,
|
| 25 |
+
identity_downsample: Optional[torch.nn.Module] = None):
|
| 26 |
+
super(BasicBlock, self).__init__()
|
| 27 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 28 |
+
out_channels,
|
| 29 |
+
kernel_size = 3,
|
| 30 |
+
stride = stride,
|
| 31 |
+
padding = 1)
|
| 32 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 33 |
+
self.relu = nn.ReLU()
|
| 34 |
+
self.conv2 = nn.Conv2d(out_channels,
|
| 35 |
+
out_channels,
|
| 36 |
+
kernel_size = 3,
|
| 37 |
+
stride = 1,
|
| 38 |
+
padding = 1)
|
| 39 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 40 |
+
self.identity_downsample = identity_downsample
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
"""Apply forward computation."""
|
| 44 |
+
identity = x
|
| 45 |
+
x = self.conv1(x)
|
| 46 |
+
x = self.bn1(x)
|
| 47 |
+
x = self.relu(x)
|
| 48 |
+
x = self.conv2(x)
|
| 49 |
+
x = self.bn2(x)
|
| 50 |
+
|
| 51 |
+
# Apply an operation to the identity output.
|
| 52 |
+
# Useful to reduce the layer size and match from conv2 output
|
| 53 |
+
if self.identity_downsample is not None:
|
| 54 |
+
identity = self.identity_downsample(identity)
|
| 55 |
+
x += identity
|
| 56 |
+
x = self.relu(x)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
class ResNet18(nn.Module):
|
| 60 |
+
"""Construct ResNet-18 Model.
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
input_channels : int
|
| 65 |
+
Number of input channels
|
| 66 |
+
num_classes : int
|
| 67 |
+
Number of class outputs
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(self, input_channels, num_classes):
|
| 71 |
+
|
| 72 |
+
super(ResNet18, self).__init__()
|
| 73 |
+
self.conv1 = nn.Conv2d(input_channels,
|
| 74 |
+
64, kernel_size = 7,
|
| 75 |
+
stride = 2, padding=3)
|
| 76 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 77 |
+
self.relu = nn.ReLU()
|
| 78 |
+
self.maxpool = nn.MaxPool2d(kernel_size = 3,
|
| 79 |
+
stride = 2,
|
| 80 |
+
padding = 1)
|
| 81 |
+
|
| 82 |
+
self.layer1 = self._make_layer(64, 64, stride = 1)
|
| 83 |
+
self.layer2 = self._make_layer(64, 128, stride = 2)
|
| 84 |
+
self.layer3 = self._make_layer(128, 256, stride = 2)
|
| 85 |
+
self.layer4 = self._make_layer(256, 512, stride = 2)
|
| 86 |
+
|
| 87 |
+
# Last layers
|
| 88 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 89 |
+
self.fc = nn.Linear(512, num_classes)
|
| 90 |
+
|
| 91 |
+
def identity_downsample(self, in_channels: int, out_channels: int) -> nn.Module:
|
| 92 |
+
"""Downsampling block to reduce the feature sizes."""
|
| 93 |
+
return nn.Sequential(
|
| 94 |
+
nn.Conv2d(in_channels,
|
| 95 |
+
out_channels,
|
| 96 |
+
kernel_size = 3,
|
| 97 |
+
stride = 2,
|
| 98 |
+
padding = 1),
|
| 99 |
+
nn.BatchNorm2d(out_channels)
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def _make_layer(self, in_channels: int, out_channels: int, stride: int) -> nn.Module:
|
| 103 |
+
"""Create sequential basic block."""
|
| 104 |
+
identity_downsample = None
|
| 105 |
+
|
| 106 |
+
# Add downsampling function
|
| 107 |
+
if stride != 1:
|
| 108 |
+
identity_downsample = self.identity_downsample(in_channels, out_channels)
|
| 109 |
+
|
| 110 |
+
return nn.Sequential(
|
| 111 |
+
BasicBlock(in_channels, out_channels, identity_downsample=identity_downsample, stride=stride),
|
| 112 |
+
BasicBlock(out_channels, out_channels)
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 116 |
+
x = self.conv1(x)
|
| 117 |
+
x = self.bn1(x)
|
| 118 |
+
x = self.relu(x)
|
| 119 |
+
x = self.maxpool(x)
|
| 120 |
+
|
| 121 |
+
x = self.layer1(x)
|
| 122 |
+
x = self.layer2(x)
|
| 123 |
+
x = self.layer3(x)
|
| 124 |
+
x = self.layer4(x)
|
| 125 |
+
|
| 126 |
+
x = self.avgpool(x)
|
| 127 |
+
x = x.view(x.shape[0], -1)
|
| 128 |
+
x = self.fc(x)
|
| 129 |
+
return x
|
style.css
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
* {
|
| 2 |
+
box-sizing: border-box;
|
| 3 |
+
}
|
| 4 |
+
|
| 5 |
+
body {
|
| 6 |
+
font-family: 'Source Sans Pro', sans-serif;
|
| 7 |
+
font-size: 16px;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
.container {
|
| 11 |
+
width: 100%;
|
| 12 |
+
margin: 0 auto;
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
.title {
|
| 16 |
+
font-size: 24px !important;
|
| 17 |
+
font-weight: 600 !important;
|
| 18 |
+
letter-spacing: 0em;
|
| 19 |
+
text-align: center;
|
| 20 |
+
color: #374159 !important;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
.subtitle {
|
| 24 |
+
font-size: 24px !important;
|
| 25 |
+
font-style: italic;
|
| 26 |
+
font-weight: 400 !important;
|
| 27 |
+
letter-spacing: 0em;
|
| 28 |
+
text-align: center;
|
| 29 |
+
color: #1d652a !important;
|
| 30 |
+
padding-bottom: 0.5em;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
.overview-heading {
|
| 34 |
+
font-size: 24px !important;
|
| 35 |
+
font-weight: 600 !important;
|
| 36 |
+
letter-spacing: 0em;
|
| 37 |
+
text-align: left;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
.overview-content {
|
| 41 |
+
font-size: 14px !important;
|
| 42 |
+
font-weight: 400 !important;
|
| 43 |
+
line-height: 30px !important;
|
| 44 |
+
letter-spacing: 0em;
|
| 45 |
+
text-align: left;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
.content-image {
|
| 49 |
+
width: 100% !important;
|
| 50 |
+
height: auto !important;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
.vl {
|
| 54 |
+
border-left: 5px solid #1d652a;
|
| 55 |
+
padding-left: 20px;
|
| 56 |
+
color: #1d652a !important;
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
.grid-container {
|
| 60 |
+
display: grid;
|
| 61 |
+
grid-template-columns: 1fr 2fr;
|
| 62 |
+
gap: 20px;
|
| 63 |
+
align-items: flex-start;
|
| 64 |
+
margin-bottom: 0.7em;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
.grid-container:nth-child(2) {
|
| 68 |
+
align-items: center;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
@media screen and (max-width: 768px) {
|
| 72 |
+
.container {
|
| 73 |
+
width: 90%;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
.grid-container {
|
| 77 |
+
display: block;
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
.overview-heading {
|
| 81 |
+
font-size: 18px !important;
|
| 82 |
+
}
|
| 83 |
+
}
|