# This file is autogenerated by the command `make fix-copies`, do not edit. from ..file_utils import requires_backends class PyTorchBenchmark: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PyTorchBenchmarkArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollator: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForLanguageModeling: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DataCollatorForPermutationLanguageModeling: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DataCollatorForSeq2Seq: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForSOP: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DataCollatorForWholeWordMask: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorWithPadding: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def default_data_collator(*args, **kwargs): requires_backends(default_data_collator, ["torch"]) class GlueDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GlueDataTrainingArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineTextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithRefDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithSOPTextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataTrainingArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDatasetForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamScorer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamSearchScorer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ForcedBOSTokenLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ForcedEOSTokenLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class HammingDiversityLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class InfNanRemoveLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LogitsProcessorList: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MinLengthLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class NoBadWordsLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class NoRepeatNGramLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PrefixConstrainedLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RepetitionPenaltyLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TemperatureLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopKLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopPLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxLengthCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxTimeCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteriaList: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def top_k_top_p_filtering(*args, **kwargs): requires_backends(top_k_top_p_filtering, ["torch"]) class Conv1D: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def apply_chunking_to_forward(*args, **kwargs): requires_backends(apply_chunking_to_forward, ["torch"]) def prune_layer(*args, **kwargs): requires_backends(prune_layer, ["torch"]) ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class AlbertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AlbertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_albert(*args, **kwargs): requires_backends(load_tf_weights_in_albert, ["torch"]) MODEL_FOR_CAUSAL_LM_MAPPING = None MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None MODEL_FOR_MASKED_LM_MAPPING = None MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None MODEL_FOR_OBJECT_DETECTION_MAPPING = None MODEL_FOR_PRETRAINING_MAPPING = None MODEL_FOR_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None MODEL_MAPPING = None MODEL_WITH_LM_HEAD_MAPPING = None class AutoModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForImageClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForSeq2SeqLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForTableQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoModelWithLMHead: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) BART_PRETRAINED_MODEL_ARCHIVE_LIST = None class BartForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BartForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BartForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BartPretrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PretrainedBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_bert(*args, **kwargs): requires_backends(load_tf_weights_in_bert, ["torch"]) class BertGenerationDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertGenerationEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertGenerationPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_bert_generation(*args, **kwargs): requires_backends(load_tf_weights_in_bert_generation, ["torch"]) BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None class BigBirdForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_big_bird(*args, **kwargs): requires_backends(load_tf_weights_in_big_bird, ["torch"]) BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None class BigBirdPegasusForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPegasusForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPegasusForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPegasusModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BigBirdPegasusPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotSmallForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotSmallForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotSmallModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class BlenderbotSmallPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class CamembertForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CamembertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None class CanineForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CanineForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CanineForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CanineForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CanineLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CaninePreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_canine(*args, **kwargs): requires_backends(load_tf_weights_in_canine, ["torch"]) CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None class CLIPModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CLIPPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CLIPTextModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CLIPVisionModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ConvBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ConvBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_convbert(*args, **kwargs): requires_backends(load_tf_weights_in_convbert, ["torch"]) CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class CTRLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CTRLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CTRLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class CTRLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaV2ForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaV2ForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaV2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaV2ForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaV2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DebertaV2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class DeiTForImageClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DeiTForImageClassificationWithTeacher: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DeiTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DeiTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class DistilBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DistilBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class DPRContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedReader: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRReader: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class ElectraForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ElectraPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_electra(*args, **kwargs): requires_backends(load_tf_weights_in_electra, ["torch"]) class EncoderDecoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class FlaubertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FlaubertWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FSMTForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FSMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PretrainedFSMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class FunnelBaseModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class FunnelPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_funnel(*args, **kwargs): requires_backends(load_tf_weights_in_funnel, ["torch"]) GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPT2DoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPT2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPT2LMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPT2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPT2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_gpt2(*args, **kwargs): requires_backends(load_tf_weights_in_gpt2, ["torch"]) GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPTNeoForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPTNeoForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPTNeoModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class GPTNeoPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_gpt_neo(*args, **kwargs): requires_backends(load_tf_weights_in_gpt_neo, ["torch"]) HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class HubertForCTC: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HubertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class HubertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class IBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class IBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LayoutLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LayoutLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LayoutLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LayoutLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) LED_PRETRAINED_MODEL_ARCHIVE_LIST = None class LEDForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LEDForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LEDForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LEDModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LEDPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class LongformerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LongformerSelfAttention: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None class LukeForEntityClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeForEntityPairClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeForEntitySpanClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LukePreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LxmertEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LxmertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LxmertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LxmertVisualFeatureEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertXLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None class M2M100ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class M2M100Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class M2M100PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MarianForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MarianModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MarianMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MBartPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class MegatronBertForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MegatronBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MMBTForClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MMBTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ModalEmbeddings: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class MobileBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MobileBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_mobilebert(*args, **kwargs): requires_backends(load_tf_weights_in_mobilebert, ["torch"]) MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class MPNetForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MPNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MT5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class MT5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class OpenAIGPTDoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class OpenAIGPTForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class OpenAIGPTLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class OpenAIGPTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class OpenAIGPTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_openai_gpt(*args, **kwargs): requires_backends(load_tf_weights_in_openai_gpt, ["torch"]) class PegasusForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PegasusModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PegasusPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class ProphetNetDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ProphetNetForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ProphetNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ProphetNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RagModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RagPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RagSequenceForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagTokenForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class ReformerAttention: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ReformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ReformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ReformerLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ReformerModelWithLMHead: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ReformerPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class RetriBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RetriBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class RobertaForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RobertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class RoFormerForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class RoFormerPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_roformer(*args, **kwargs): requires_backends(load_tf_weights_in_roformer, ["torch"]) SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None class Speech2TextForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class Speech2TextModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class Speech2TextPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class SqueezeBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SqueezeBertModule: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class T5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class T5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class T5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class T5PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_t5(*args, **kwargs): requires_backends(load_tf_weights_in_t5, ["torch"]) TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None class TapasForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TapasForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TapasForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TapasModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TapasPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class AdaptiveEmbedding: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TransfoXLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TransfoXLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class TransfoXLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_transfo_xl(*args, **kwargs): requires_backends(load_tf_weights_in_transfo_xl, ["torch"]) VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class VisualBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class VisualBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class VisualBertForRegionToPhraseAlignment: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForVisualReasoning: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class VisualBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ViTForImageClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ViTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None class Wav2Vec2ForCTC: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class Wav2Vec2ForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class Wav2Vec2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMProphetNetDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMProphetNetForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMProphetNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMRobertaForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLMRobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class XLNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def load_tf_weights_in_xlnet(*args, **kwargs): requires_backends(load_tf_weights_in_xlnet, ["torch"]) class Adafactor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AdamW: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def get_constant_schedule(*args, **kwargs): requires_backends(get_constant_schedule, ["torch"]) def get_constant_schedule_with_warmup(*args, **kwargs): requires_backends(get_constant_schedule_with_warmup, ["torch"]) def get_cosine_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_schedule_with_warmup, ["torch"]) def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) def get_linear_schedule_with_warmup(*args, **kwargs): requires_backends(get_linear_schedule_with_warmup, ["torch"]) def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) def get_scheduler(*args, **kwargs): requires_backends(get_scheduler, ["torch"]) class Trainer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def torch_distributed_zero_first(*args, **kwargs): requires_backends(torch_distributed_zero_first, ["torch"]) class Seq2SeqTrainer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])