# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available _import_structure = { "configuration_mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig"], "tokenization_mpnet": ["MPNetTokenizer"], } if is_tokenizers_available(): _import_structure["tokenization_mpnet_fast"] = ["MPNetTokenizerFast"] if is_torch_available(): _import_structure["modeling_mpnet"] = [ "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", "MPNetForMaskedLM", "MPNetForMultipleChoice", "MPNetForQuestionAnswering", "MPNetForSequenceClassification", "MPNetForTokenClassification", "MPNetLayer", "MPNetModel", "MPNetPreTrainedModel", ] if is_tf_available(): _import_structure["modeling_tf_mpnet"] = [ "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMPNetEmbeddings", "TFMPNetForMaskedLM", "TFMPNetForMultipleChoice", "TFMPNetForQuestionAnswering", "TFMPNetForSequenceClassification", "TFMPNetForTokenClassification", "TFMPNetMainLayer", "TFMPNetModel", "TFMPNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig from .tokenization_mpnet import MPNetTokenizer if is_tokenizers_available(): from .tokenization_mpnet_fast import MPNetTokenizerFast if is_torch_available(): from .modeling_mpnet import ( MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetLayer, MPNetModel, MPNetPreTrainedModel, ) if is_tf_available(): from .modeling_tf_mpnet import ( TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFMPNetEmbeddings, TFMPNetForMaskedLM, TFMPNetForMultipleChoice, TFMPNetForQuestionAnswering, TFMPNetForSequenceClassification, TFMPNetForTokenClassification, TFMPNetMainLayer, TFMPNetModel, TFMPNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)