# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import ( _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"], } if is_sentencepiece_available(): _import_structure["tokenization_camembert"] = ["CamembertTokenizer"] if is_tokenizers_available(): _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"] if is_torch_available(): _import_structure["modeling_camembert"] = [ "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "CamembertForCausalLM", "CamembertForMaskedLM", "CamembertForMultipleChoice", "CamembertForQuestionAnswering", "CamembertForSequenceClassification", "CamembertForTokenClassification", "CamembertModel", ] if is_tf_available(): _import_structure["modeling_tf_camembert"] = [ "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", ] if TYPE_CHECKING: from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer if is_tokenizers_available(): from .tokenization_camembert_fast import CamembertTokenizerFast if is_torch_available(): from .modeling_camembert import ( CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, ) if is_tf_available(): from .modeling_tf_camembert import ( TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)