# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - Flax general utilities.""" import os from pickle import UnpicklingError import numpy as np import jax.numpy as jnp import transformers from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict from .utils import logging logger = logging.get_logger(__name__) ##################### # PyTorch => Flax # ##################### def load_pytorch_checkpoint_in_flax_state_dict(flax_model, pytorch_checkpoint_path, allow_missing_keys=False): """Load pytorch checkpoints in a flax model""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see " "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." ) raise pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info(f"Loading PyTorch weights from {pt_path}") pt_state_dict = torch.load(pt_path, map_location="cpu") logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) return flax_state_dict def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): # convert pytorch tensor to numpy pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} random_flax_state_dict = flatten_dict(flax_model.params) flax_state_dict = {} remove_base_model_prefix = (flax_model.base_model_prefix not in flax_model.params) and ( flax_model.base_model_prefix in set([k.split(".")[0] for k in pt_state_dict.keys()]) ) add_base_model_prefix = (flax_model.base_model_prefix in flax_model.params) and ( flax_model.base_model_prefix not in set([k.split(".")[0] for k in pt_state_dict.keys()]) ) # Need to change some parameters name to match Flax names so that we don't have to fork any layer for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) has_base_model_prefix = pt_tuple_key[0] == flax_model.base_model_prefix require_base_model_prefix = (flax_model.base_model_prefix,) + pt_tuple_key in random_flax_state_dict if remove_base_model_prefix and has_base_model_prefix: pt_tuple_key = pt_tuple_key[1:] elif add_base_model_prefix and require_base_model_prefix: pt_tuple_key = (flax_model.base_model_prefix,) + pt_tuple_key # Correctly rename weight parameters if pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: pt_tuple_key = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) elif pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and pt_tuple_key not in random_flax_state_dict: # conv layer pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) pt_tensor = pt_tensor.transpose(2, 3, 1, 0) elif pt_tuple_key[-1] == "weight" and pt_tuple_key not in random_flax_state_dict: # linear layer pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) pt_tensor = pt_tensor.T elif pt_tuple_key[-1] == "gamma": pt_tuple_key = pt_tuple_key[:-1] + ("weight",) elif pt_tuple_key[-1] == "beta": pt_tuple_key = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key in random_flax_state_dict: if pt_tensor.shape != random_flax_state_dict[pt_tuple_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[pt_tuple_key].shape}, but is {pt_tensor.shape}." ) # also add unexpected weight so that warning is thrown flax_state_dict[pt_tuple_key] = jnp.asarray(pt_tensor) return unflatten_dict(flax_state_dict) ##################### # Flax => PyTorch # ##################### def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): """Load flax checkpoints in a PyTorch model""" flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) logger.info(f"Loading Flax weights from {flax_checkpoint_path}") # import correct flax class flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) # load flax weight dict with open(flax_checkpoint_path, "rb") as state_f: try: flax_state_dict = from_bytes(flax_cls, state_f.read()) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") return load_flax_weights_in_pytorch_model(model, flax_state_dict) def load_flax_weights_in_pytorch_model(pt_model, flax_state): """Load flax checkpoints in a PyTorch model""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see " "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." ) raise flax_state_dict = flatten_dict(flax_state) pt_model_dict = pt_model.state_dict() remove_base_model_prefix = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) add_base_model_prefix = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) # keep track of unexpected & missing keys unexpected_keys = [] missing_keys = set(pt_model_dict.keys()) for flax_key_tuple, flax_tensor in flax_state_dict.items(): has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if remove_base_model_prefix and has_base_model_prefix: flax_key_tuple = flax_key_tuple[1:] elif add_base_model_prefix and require_base_model_prefix: flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: # conv layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: # linear layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_key = ".".join(flax_key_tuple) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected" f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) # remove from missing keys missing_keys.remove(flax_key) else: # weight is not expected by PyTorch model unexpected_keys.append(flax_key) pt_model.load_state_dict(pt_model_dict) # re-transform missing_keys to list missing_keys = list(missing_keys) if len(unexpected_keys) > 0: logger.warning( "Some weights of the Flax model were not used when " f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a Flax model trained on another task " "or with another architecture (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect " "to be exactly identical (e.g. initializing a BertForSequenceClassification model from a FlaxBertForSequenceClassification model)." ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model " f"and are newly initialized: {missing_keys}\n" "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model