# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pickle import random import time import warnings from typing import Dict, List, Optional import torch from torch.utils.data.dataset import Dataset # from filelock import FileLock from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) DEPRECATION_WARNING = ( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: {0}" ) class TextDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__( self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, overwrite_cache=False, cache_dir: Optional[str] = None, ): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) assert os.path.isfile(file_path), f"Input file path {file_path} not found" block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False) directory, filename = os.path.split(file_path) cached_features_file = os.path.join( cache_dir if cache_dir is not None else directory, f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}", ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: start = time.time() with open(cached_features_file, "rb") as handle: self.examples = pickle.load(handle) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {directory}") self.examples = [] with open(file_path, encoding="utf-8") as f: text = f.read() tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size self.examples.append( tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]) ) # Note that we are losing the last truncated example here for the sake of simplicity (no padding) # If your dataset is small, first you should look for a bigger one :-) and second you # can change this behavior by adding (model specific) padding. start = time.time() with open(cached_features_file, "wb") as handle: pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__(self): return len(self.examples) def __getitem__(self, i) -> torch.Tensor: return torch.tensor(self.examples[i], dtype=torch.long) class LineByLineTextDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) assert os.path.isfile(file_path), f"Input file path {file_path} not found" # Here, we do not cache the features, operating under the assumption # that we will soon use fast multithreaded tokenizers from the # `tokenizers` repo everywhere =) logger.info(f"Creating features from dataset file at {file_path}") with open(file_path, encoding="utf-8") as f: lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class LineByLineWithRefDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm_wwm.py" ), FutureWarning, ) assert os.path.isfile(file_path), f"Input file path {file_path} not found" assert os.path.isfile(ref_path), f"Ref file path {file_path} not found" # Here, we do not cache the features, operating under the assumption # that we will soon use fast multithreaded tokenizers from the # `tokenizers` repo everywhere =) logger.info(f"Creating features from dataset file at {file_path}") logger.info(f"Use ref segment results at {ref_path}") with open(file_path, encoding="utf-8") as f: data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # Get ref inf from file with open(ref_path, encoding="utf-8") as f: ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] assert len(data) == len(ref) batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] n = len(self.examples) for i in range(n): self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class LineByLineWithSOPTextDataset(Dataset): """ Dataset for sentence order prediction task, prepare sentence pairs for SOP task """ def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) assert os.path.isdir(file_dir) logger.info(f"Creating features from dataset file folder at {file_dir}") self.examples = [] # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed) # file path looks like ./dataset/wiki_1, ./dataset/wiki_2 for file_name in os.listdir(file_dir): file_path = os.path.join(file_dir, file_name) assert os.path.isfile(file_path) article_open = False with open(file_path, encoding="utf-8") as f: original_lines = f.readlines() article_lines = [] for line in original_lines: if "" in line: article_open = False document = [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) for line in article_lines[1:] if (len(line) > 0 and not line.isspace()) ] examples = self.create_examples_from_document(document, block_size, tokenizer) self.examples.extend(examples) article_lines = [] else: if article_open: article_lines.append(line) logger.info("Dataset parse finished.") def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): """Creates examples for a single document.""" # Account for special tokens max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True) # We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < short_seq_prob: target_seq_length = random.randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. examples = [] current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0 while i < len(document): segment = document[i] # get a segment if not segment: i += 1 continue current_chunk.append(segment) # add a segment to current chunk current_length += len(segment) # overall token length # if current length goes to the target length or reaches the end of file, start building token a and b if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence. a_end = 1 # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) # token a tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) # token b tokens_b = [] for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) if len(tokens_a) == 0 or len(tokens_b) == 0: continue # switch tokens_a and tokens_b randomly if random.random() < 0.5: is_next = False tokens_a, tokens_b = tokens_b, tokens_a else: is_next = True def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b assert len(trunc_tokens) >= 1 # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if random.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop() truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 # add special tokens input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), } examples.append(example) current_chunk = [] # clear current chunk current_length = 0 # reset current text length i += 1 # go to next line return examples def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class TextDatasetForNextSentencePrediction(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__( self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, overwrite_cache=False, short_seq_probability=0.1, nsp_probability=0.5, ): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) assert os.path.isfile(file_path), f"Input file path {file_path} not found" self.short_seq_probability = short_seq_probability self.nsp_probability = nsp_probability directory, filename = os.path.split(file_path) cached_features_file = os.path.join( directory, f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", ) self.tokenizer = tokenizer # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" # Input file format: # (1) One sentence per line. These should ideally be actual sentences, not # entire paragraphs or arbitrary spans of text. (Because we use the # sentence boundaries for the "next sentence prediction" task). # (2) Blank lines between documents. Document boundaries are needed so # that the "next sentence prediction" task doesn't span between documents. # # Example: # I am very happy. # Here is the second sentence. # # A new document. with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: start = time.time() with open(cached_features_file, "rb") as handle: self.examples = pickle.load(handle) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {directory}") self.documents = [[]] with open(file_path, encoding="utf-8") as f: while True: line = f.readline() if not line: break line = line.strip() # Empty lines are used as document delimiters if not line and len(self.documents[-1]) != 0: self.documents.append([]) tokens = tokenizer.tokenize(line) tokens = tokenizer.convert_tokens_to_ids(tokens) if tokens: self.documents[-1].append(tokens) logger.info(f"Creating examples from {len(self.documents)} documents.") self.examples = [] for doc_index, document in enumerate(self.documents): self.create_examples_from_document(document, doc_index, block_size) start = time.time() with open(cached_features_file, "wb") as handle: pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): """Creates examples for a single document.""" max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True) # We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < self.short_seq_probability: target_seq_length = random.randint(2, max_num_tokens) current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] if len(current_chunk) == 1 or random.random() < self.nsp_probability: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = random.randint(0, len(self.documents) - 1) if random_document_index != doc_index: break random_document = self.documents[random_document_index] random_start = random.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 # add special tokens input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), } self.examples.append(example) current_chunk = [] current_length = 0 i += 1 def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i]