Kaizouku's picture
Upload 564 files
2260825 verified
import copy
import functools
import inspect
from typing import Any, Dict, List, Optional, Union
import torch
from packaging import version
from torch import nn
from torch.fx import Graph, GraphModule, Node, Proxy, Tracer
from torch.fx.node import Argument
from transformers.file_utils import TORCH_FX_REQUIRED_VERSION, importlib_metadata, is_torch_fx_available
from .. import (
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
GPT2DoubleHeadsModel,
PreTrainedModel,
logging,
)
from ..models.auto import get_values
logger = logging.get_logger(__name__)
class HFProxy(Proxy):
"""
Proxy that is able to provide the proper ranks, shapes and boolean values during symbolic tracing by implementing
the dim, size and __bool__ methods. It can be easily extended by either adding new methods or extending the
existing ones.
"""
def __init__(self, node: Node, tracer: Optional[Tracer] = None):
super().__init__(node, tracer=tracer)
if hasattr(self, "tracer") and self.tracer is not None:
self.device = self.tracer.root.device
self.dtype = next(self.tracer.root.parameters()).dtype
@property
def shape(self):
return self.size()
def __setitem__(self, key, value):
pass
def __contains__(self, key):
return False
def _wrap_method_for_model_recording(model, method_name, cache_name):
"""Helper function that wraps a torch.Tensor method to record its outputs during forward pass."""
method = getattr(torch.Tensor, method_name)
@functools.wraps(method)
def wrapped(*args, **kwargs):
if not hasattr(model, cache_name):
setattr(model, cache_name, [])
cache = getattr(model, cache_name)
res = method(*args, **kwargs)
cache.append(res)
return res
return wrapped
def _create_recorded_proxy_method(proxy, method_name, cache_name):
"""
Helper function that sets a recorded torch.Tensor method as a HFProxy method that will use the recorded values
during symbolic tracing.
"""
def method(self, *args, **kwargs):
cache = getattr(self.tracer.root, cache_name)
res = cache.pop(0)
return res
method.__name__ = method_name
bound_method = method.__get__(proxy, proxy.__class__)
setattr(proxy, method_name, bound_method)
def _wrap_method_for_model_tracing(model, method_name, cache_name):
"""
Helper function that sets a recorded torch.Tensor method as a torch.Tensor method that will use the recorded values
during symbolic tracing.
"""
original_method = getattr(torch.Tensor, method_name)
@functools.wraps(original_method)
def method(*args, **kwargs):
cache = getattr(model, cache_name)
res = cache.pop(0)
return res
setattr(torch.Tensor, method_name, method)
if method_name == "size":
setattr(torch.Tensor, "shape", property(getattr(torch.Tensor, method_name)))
def _monkey_patch_tensor_methods_for_model_recording(model, method_names):
"""
Helper function that patches torch.Tensor methods (specified by the method_names list) to record model inference
before symbolic tracing.
"""
cache_names = dict()
original_methods = dict()
for method_name in method_names:
cache_name = f"cache_{method_name}"
cache_names[method_name] = cache_name
if not hasattr(torch.Tensor, method_name):
logger.info(f"torch.Tensor has no method called {method_name}, skipping patching.")
continue
original_methods[method_name] = getattr(torch.Tensor, method_name)
setattr(torch.Tensor, method_name, _wrap_method_for_model_recording(model, method_name, cache_name))
if method_name == "size":
original_methods["shape"] = torch.Tensor.shape
setattr(torch.Tensor, "shape", property(getattr(torch.Tensor, method_name)))
return cache_names, original_methods
def _reset_tensor_methods(original_methods):
"""Helper function that resets the monkey patched torch.Tensor methods to their original values."""
for name, method in original_methods.items():
setattr(torch.Tensor, name, method)
class HFTracer(Tracer):
"""
Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the
regular PyTorch torch.fx.Proxy.
"""
default_methods_to_record = {"__bool__", "size", "dim"}
def __init__(self, batch_size=1, sequence_length=[128, 128], num_choices=-1):
super().__init__()
if not is_torch_fx_available():
torch_version = version.parse(importlib_metadata.version("torch"))
raise ImportError(
f"Found an incompatible version of torch. Found version {torch_version}, but only version "
f"{TORCH_FX_REQUIRED_VERSION} is supported."
)
encoder_sequence_length = sequence_length[0] if isinstance(sequence_length, (list, tuple)) else sequence_length
decoder_sequence_length = (
sequence_length[1] if isinstance(sequence_length, (list, tuple)) else encoder_sequence_length
)
self.encoder_shape = [batch_size, encoder_sequence_length]
self.decoder_shape = (
[batch_size, decoder_sequence_length] if decoder_sequence_length > 0 else list(self.encoder_shape)
)
self.num_choices = num_choices
if self.num_choices > 0:
self.encoder_shape = [batch_size, self.num_choices, encoder_sequence_length]
self.decoder_shape = [batch_size, self.num_choices, decoder_sequence_length]
self.prev_module = None
self.recorded_methods = None
def proxy(self, node: Node):
p = HFProxy(node, self)
if self.recorded_methods:
for method_name, cache_name in self.recorded_methods.items():
_create_recorded_proxy_method(p, method_name, cache_name)
return p
def _generate_dummy_input(self, model, input_name):
"""Generates dummy input for model inference recording."""
model_class = model.__class__
device = model.device
inputs_dict = dict()
if input_name in ["labels", "start_positions", "end_positions"]:
batch_size = self.encoder_shape[0]
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = torch.ones(batch_size, dtype=torch.long, device=device)
elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class in [
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(MODEL_FOR_MASKED_LM_MAPPING),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
GPT2DoubleHeadsModel,
]:
inputs_dict["labels"] = torch.zeros(self.decoder_shape, dtype=torch.long, device=device)
elif model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(self.encoder_shape, dtype=torch.long, device=device)
else:
raise NotImplementedError(f"{model_class} not supported yet.")
elif "mask" in input_name or "ids" in input_name:
shape = self.encoder_shape if "decoder" not in input_name else self.decoder_shape
inputs_dict[input_name] = torch.ones(shape, dtype=torch.long, device=device)
else:
shape = self.encoder_shape if "decoder" not in input_name else self.decoder_shape
shape += [model.config.hidden_size]
inputs_dict[input_name] = torch.ones(shape, dtype=torch.float, device=device)
return inputs_dict
def record(self, model, input_names, method_names=None):
"""
Records torch.Tensor method outputs (specified by the method_names list) that will then be used during symbolic
tracing.
"""
if method_names is None:
method_names = self.default_methods_to_record
inputs = dict()
for input_name in input_names:
inputs.update(self._generate_dummy_input(model, input_name))
clone = copy.deepcopy(model)
cache_names, original_methods = _monkey_patch_tensor_methods_for_model_recording(clone, method_names)
self.original_methods = original_methods
clone(**inputs)
_reset_tensor_methods(original_methods)
self.recorded_methods = {
method_name: cache_name for method_name, cache_name in cache_names.items() if hasattr(clone, cache_name)
}
for cache_name in self.recorded_methods.values():
setattr(model, cache_name, getattr(clone, cache_name))
def trace(self, root: PreTrainedModel, concrete_args: Optional[Dict[str, Any]] = None, method_names=None) -> Graph:
sig = inspect.signature(root.forward)
input_names = sig.parameters.keys() - concrete_args.keys()
self.record(root, input_names, method_names=method_names)
for method_name, cache_name in self.recorded_methods.items():
_wrap_method_for_model_tracing(root, method_name, cache_name)
graph = super().trace(root, concrete_args=concrete_args)
_reset_tensor_methods(self.original_methods)
return graph
def _insert_module_as_submodule(self, mod):
"""
Helper method which tries to insert a module that was not declared as submodule.
"""
# First, retrieve the parent module.
if self.prev_module is None:
return None
parent_path = self.prev_module.rsplit(".", 1)[0]
parent_mod = None
for path, module in self.root.named_modules():
if path == parent_path:
parent_mod = module
break
if parent_mod is None:
return None
# If retrieving the parent module was possible, set the module not declared as a submodule
# as a parent module attribute.
path = None
for var_name, var_val in inspect.currentframe().f_back.f_locals.items():
if mod is var_val:
setattr(parent_mod, var_name, mod)
path = f"{parent_path}.{var_name}"
break
return path
def path_of_module(self, mod: nn.Module) -> str:
"""
Helper method to find the qualified name of ``mod`` in the Module hierarchy of ``root``. For example, if
``root`` has a submodule named ``foo``, which has a submodule named ``bar``, passing ``bar`` into this function
will return the string "foo.bar".
Args:
mod (str): The ``Module`` to retrieve the qualified name for.
"""
# Prefer the O(1) algorithm
if hasattr(self, "submodule_paths") and self.submodule_paths:
path = self.submodule_paths.get(mod)
if path is None:
path = self._insert_module_as_submodule(mod)
if path is None:
raise NameError("module is not installed as a submodule")
self.prev_module = path
return path
# O(N^2) fallback in the case that we didn't store the submodule
# paths.
else:
for n, p in self.root.named_modules():
if mod is p:
self.prev_module = n
return n
path = self._insert_module_as_submodule(mod)
if path is None:
raise NameError("module is not installed as a submodule")
self.prev_module = path
return path
def create_arg(self, a: Any) -> Argument:
if isinstance(a, range):
return super().create_arg(list(a))
return super().create_arg(a)
def symbolic_trace(
model: PreTrainedModel,
input_names: Optional[List[str]] = None,
batch_size: int = 1,
sequence_length: Union[int, List[int]] = [128, 128],
num_choices: int = -1,
) -> GraphModule:
"""
Performs symbolic tracing on the model.
Args:
model (:obj:`PretrainedModel`):
The model to trace.
input_names (:obj:`List[str]`, `optional`):
The names of the inputs of the traced model. If unset, model.dummy_inputs().keys() are used instead.
batch_size (:obj:`int`, `optional`, defaults to 1):
The batch size of the traced model inputs.
sequence_length (:obj:`int` or :obj:`List[int]]`):
The sequence length of the traced model inputs. For sequence-to-sequence models with different sequence
lengths between the encoder and the decoder inputs, this must be :obj:`[encoder_sequence_length,
decoder_sequence_length]`.
num_choices (:obj:`int`, `optional`, defaults to -1):
The number of possible choices for a multiple choice task.
Returns:
:obj:`torch.fx.GraphModule`: A GraphModule constructed by recording operations seen while tracing the model.
Example::
from transformers.modeling_fx_utils import symbolic_trace
traced_model = symbolic_trace(
model,
input_names=["input_ids", "attention_mask", "token_type_ids"],
batch_size=1,
sequence_length=128,
)
"""
if input_names is None:
input_names = model.dummy_inputs.keys()
sig = inspect.signature(model.forward)
# TODO: how to handle the case of the "return_dict" parameter.
concrete_args = {p.name: p.default for p in sig.parameters.values() if p.name not in input_names}
tracer = HFTracer(batch_size=batch_size, sequence_length=sequence_length, num_choices=num_choices)
traced_graph = tracer.trace(model, concrete_args=concrete_args)
traced = torch.fx.GraphModule(model, traced_graph)
return traced