Spaces:
Sleeping
Sleeping
| import warnings | |
| from typing import TYPE_CHECKING, List, Optional, Tuple, Union | |
| import numpy as np | |
| from ..file_utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available | |
| from ..modelcard import ModelCard | |
| from ..models.bert.tokenization_bert import BasicTokenizer | |
| from ..tokenization_utils import PreTrainedTokenizer | |
| from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline | |
| if TYPE_CHECKING: | |
| from ..modeling_tf_utils import TFPreTrainedModel | |
| from ..modeling_utils import PreTrainedModel | |
| if is_tf_available(): | |
| from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING | |
| if is_torch_available(): | |
| import torch | |
| from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING | |
| class TokenClassificationArgumentHandler(ArgumentHandler): | |
| """ | |
| Handles arguments for token classification. | |
| """ | |
| def __call__(self, inputs: Union[str, List[str]], **kwargs): | |
| if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0: | |
| inputs = list(inputs) | |
| batch_size = len(inputs) | |
| elif isinstance(inputs, str): | |
| inputs = [inputs] | |
| batch_size = 1 | |
| else: | |
| raise ValueError("At least one input is required.") | |
| offset_mapping = kwargs.get("offset_mapping") | |
| if offset_mapping: | |
| if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): | |
| offset_mapping = [offset_mapping] | |
| if len(offset_mapping) != batch_size: | |
| raise ValueError("offset_mapping should have the same batch size as the input") | |
| return inputs, offset_mapping | |
| class AggregationStrategy(ExplicitEnum): | |
| """All the valid aggregation strategies for TokenClassificationPipeline""" | |
| NONE = "none" | |
| SIMPLE = "simple" | |
| FIRST = "first" | |
| AVERAGE = "average" | |
| MAX = "max" | |
| class TokenClassificationPipeline(Pipeline): | |
| """ | |
| Named Entity Recognition pipeline using any :obj:`ModelForTokenClassification`. See the `named entity recognition | |
| examples <../task_summary.html#named-entity-recognition>`__ for more information. | |
| This token recognition pipeline can currently be loaded from :func:`~transformers.pipeline` using the following | |
| task identifier: :obj:`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location | |
| or miscellaneous). | |
| The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the | |
| up-to-date list of available models on `huggingface.co/models | |
| <https://huggingface.co/models?filter=token-classification>`__. | |
| """ | |
| default_input_names = "sequences" | |
| def __init__( | |
| self, | |
| model: Union["PreTrainedModel", "TFPreTrainedModel"], | |
| tokenizer: PreTrainedTokenizer, | |
| modelcard: Optional[ModelCard] = None, | |
| framework: Optional[str] = None, | |
| args_parser: ArgumentHandler = TokenClassificationArgumentHandler(), | |
| device: int = -1, | |
| binary_output: bool = False, | |
| ignore_labels=["O"], | |
| task: str = "", | |
| grouped_entities: Optional[bool] = None, | |
| ignore_subwords: Optional[bool] = None, | |
| aggregation_strategy: Optional[AggregationStrategy] = None, | |
| ): | |
| super().__init__( | |
| model=model, | |
| tokenizer=tokenizer, | |
| modelcard=modelcard, | |
| framework=framework, | |
| device=device, | |
| binary_output=binary_output, | |
| task=task, | |
| ) | |
| self.check_model_type( | |
| TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING | |
| if self.framework == "tf" | |
| else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING | |
| ) | |
| self._basic_tokenizer = BasicTokenizer(do_lower_case=False) | |
| self._args_parser = args_parser | |
| self.ignore_labels = ignore_labels | |
| if aggregation_strategy is None: | |
| aggregation_strategy = AggregationStrategy.NONE | |
| if grouped_entities is not None or ignore_subwords is not None: | |
| if grouped_entities and ignore_subwords: | |
| aggregation_strategy = AggregationStrategy.FIRST | |
| elif grouped_entities and not ignore_subwords: | |
| aggregation_strategy = AggregationStrategy.SIMPLE | |
| else: | |
| aggregation_strategy = AggregationStrategy.NONE | |
| if grouped_entities is not None: | |
| warnings.warn( | |
| f'`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy="{aggregation_strategy}"` instead.' | |
| ) | |
| if ignore_subwords is not None: | |
| warnings.warn( | |
| f'`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy="{aggregation_strategy}"` instead.' | |
| ) | |
| if isinstance(aggregation_strategy, str): | |
| aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()] | |
| if ( | |
| aggregation_strategy in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE} | |
| and not self.tokenizer.is_fast | |
| ): | |
| raise ValueError( | |
| "Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" | |
| 'to `"simple"` or use a fast tokenizer.' | |
| ) | |
| self.aggregation_strategy = aggregation_strategy | |
| def __call__(self, inputs: Union[str, List[str]], **kwargs): | |
| """ | |
| Classify each token of the text(s) given as inputs. | |
| Args: | |
| inputs (:obj:`str` or :obj:`List[str]`): | |
| One or several texts (or one list of texts) for token classification. | |
| Return: | |
| A list or a list of list of :obj:`dict`: Each result comes as a list of dictionaries (one for each token in | |
| the corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) | |
| with the following keys: | |
| - **word** (:obj:`str`) -- The token/word classified. | |
| - **score** (:obj:`float`) -- The corresponding probability for :obj:`entity`. | |
| - **entity** (:obj:`str`) -- The entity predicted for that token/word (it is named `entity_group` when | |
| `aggregation_strategy` is not :obj:`"none"`. | |
| - **index** (:obj:`int`, only present when ``aggregation_strategy="none"``) -- The index of the | |
| corresponding token in the sentence. | |
| - **start** (:obj:`int`, `optional`) -- The index of the start of the corresponding entity in the sentence. | |
| Only exists if the offsets are available within the tokenizer | |
| - **end** (:obj:`int`, `optional`) -- The index of the end of the corresponding entity in the sentence. | |
| Only exists if the offsets are available within the tokenizer | |
| """ | |
| _inputs, offset_mappings = self._args_parser(inputs, **kwargs) | |
| answers = [] | |
| for i, sentence in enumerate(_inputs): | |
| # Manage correct placement of the tensors | |
| with self.device_placement(): | |
| tokens = self.tokenizer( | |
| sentence, | |
| return_attention_mask=False, | |
| return_tensors=self.framework, | |
| truncation=True, | |
| return_special_tokens_mask=True, | |
| return_offsets_mapping=self.tokenizer.is_fast, | |
| ) | |
| if self.tokenizer.is_fast: | |
| offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] | |
| elif offset_mappings: | |
| offset_mapping = offset_mappings[i] | |
| else: | |
| offset_mapping = None | |
| special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] | |
| # Forward | |
| if self.framework == "tf": | |
| entities = self.model(tokens.data)[0][0].numpy() | |
| input_ids = tokens["input_ids"].numpy()[0] | |
| else: | |
| with torch.no_grad(): | |
| tokens = self.ensure_tensor_on_device(**tokens) | |
| entities = self.model(**tokens)[0][0].cpu().numpy() | |
| input_ids = tokens["input_ids"].cpu().numpy()[0] | |
| scores = np.exp(entities) / np.exp(entities).sum(-1, keepdims=True) | |
| pre_entities = self.gather_pre_entities(sentence, input_ids, scores, offset_mapping, special_tokens_mask) | |
| grouped_entities = self.aggregate(pre_entities, self.aggregation_strategy) | |
| # Filter anything that is in self.ignore_labels | |
| entities = [ | |
| entity | |
| for entity in grouped_entities | |
| if entity.get("entity", None) not in self.ignore_labels | |
| and entity.get("entity_group", None) not in self.ignore_labels | |
| ] | |
| answers.append(entities) | |
| if len(answers) == 1: | |
| return answers[0] | |
| return answers | |
| def gather_pre_entities( | |
| self, | |
| sentence: str, | |
| input_ids: np.ndarray, | |
| scores: np.ndarray, | |
| offset_mapping: Optional[List[Tuple[int, int]]], | |
| special_tokens_mask: np.ndarray, | |
| ) -> List[dict]: | |
| """Fuse various numpy arrays into dicts with all the information needed for aggregation""" | |
| pre_entities = [] | |
| for idx, token_scores in enumerate(scores): | |
| # Filter special_tokens, they should only occur | |
| # at the sentence boundaries since we're not encoding pairs of | |
| # sentences so we don't have to keep track of those. | |
| if special_tokens_mask[idx]: | |
| continue | |
| word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) | |
| if offset_mapping is not None: | |
| start_ind, end_ind = offset_mapping[idx] | |
| word_ref = sentence[start_ind:end_ind] | |
| is_subword = len(word_ref) != len(word) | |
| if int(input_ids[idx]) == self.tokenizer.unk_token_id: | |
| word = word_ref | |
| is_subword = False | |
| else: | |
| start_ind = None | |
| end_ind = None | |
| is_subword = False | |
| pre_entity = { | |
| "word": word, | |
| "scores": token_scores, | |
| "start": start_ind, | |
| "end": end_ind, | |
| "index": idx, | |
| "is_subword": is_subword, | |
| } | |
| pre_entities.append(pre_entity) | |
| return pre_entities | |
| def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: | |
| if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}: | |
| entities = [] | |
| for pre_entity in pre_entities: | |
| entity_idx = pre_entity["scores"].argmax() | |
| score = pre_entity["scores"][entity_idx] | |
| entity = { | |
| "entity": self.model.config.id2label[entity_idx], | |
| "score": score, | |
| "index": pre_entity["index"], | |
| "word": pre_entity["word"], | |
| "start": pre_entity["start"], | |
| "end": pre_entity["end"], | |
| } | |
| entities.append(entity) | |
| else: | |
| entities = self.aggregate_words(pre_entities, aggregation_strategy) | |
| if aggregation_strategy == AggregationStrategy.NONE: | |
| return entities | |
| return self.group_entities(entities) | |
| def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict: | |
| word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities]) | |
| if aggregation_strategy == AggregationStrategy.FIRST: | |
| scores = entities[0]["scores"] | |
| idx = scores.argmax() | |
| score = scores[idx] | |
| entity = self.model.config.id2label[idx] | |
| elif aggregation_strategy == AggregationStrategy.MAX: | |
| max_entity = max(entities, key=lambda entity: entity["scores"].max()) | |
| scores = max_entity["scores"] | |
| idx = scores.argmax() | |
| score = scores[idx] | |
| entity = self.model.config.id2label[idx] | |
| elif aggregation_strategy == AggregationStrategy.AVERAGE: | |
| scores = np.stack([entity["scores"] for entity in entities]) | |
| average_scores = np.nanmean(scores, axis=0) | |
| entity_idx = average_scores.argmax() | |
| entity = self.model.config.id2label[entity_idx] | |
| score = average_scores[entity_idx] | |
| else: | |
| raise ValueError("Invalid aggregation_strategy") | |
| new_entity = { | |
| "entity": entity, | |
| "score": score, | |
| "word": word, | |
| "start": entities[0]["start"], | |
| "end": entities[-1]["end"], | |
| } | |
| return new_entity | |
| def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: | |
| """ | |
| Override tokens from a given word that disagree to force agreement on word boundaries. | |
| Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft| | |
| company| B-ENT I-ENT | |
| """ | |
| assert aggregation_strategy not in { | |
| AggregationStrategy.NONE, | |
| AggregationStrategy.SIMPLE, | |
| }, "NONE and SIMPLE strategies are invalid" | |
| word_entities = [] | |
| word_group = None | |
| for entity in entities: | |
| if word_group is None: | |
| word_group = [entity] | |
| elif entity["is_subword"]: | |
| word_group.append(entity) | |
| else: | |
| word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) | |
| word_group = [entity] | |
| # Last item | |
| word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) | |
| return word_entities | |
| def group_sub_entities(self, entities: List[dict]) -> dict: | |
| """ | |
| Group together the adjacent tokens with the same entity predicted. | |
| Args: | |
| entities (:obj:`dict`): The entities predicted by the pipeline. | |
| """ | |
| # Get the first entity in the entity group | |
| entity = entities[0]["entity"].split("-")[-1] | |
| scores = np.nanmean([entity["score"] for entity in entities]) | |
| tokens = [entity["word"] for entity in entities] | |
| entity_group = { | |
| "entity_group": entity, | |
| "score": np.mean(scores), | |
| "word": self.tokenizer.convert_tokens_to_string(tokens), | |
| "start": entities[0]["start"], | |
| "end": entities[-1]["end"], | |
| } | |
| return entity_group | |
| def get_tag(self, entity_name: str) -> Tuple[str, str]: | |
| if entity_name.startswith("B-"): | |
| bi = "B" | |
| tag = entity_name[2:] | |
| elif entity_name.startswith("I-"): | |
| bi = "I" | |
| tag = entity_name[2:] | |
| else: | |
| # It's not in B-, I- format | |
| bi = "B" | |
| tag = entity_name | |
| return bi, tag | |
| def group_entities(self, entities: List[dict]) -> List[dict]: | |
| """ | |
| Find and group together the adjacent tokens with the same entity predicted. | |
| Args: | |
| entities (:obj:`dict`): The entities predicted by the pipeline. | |
| """ | |
| entity_groups = [] | |
| entity_group_disagg = [] | |
| for entity in entities: | |
| if not entity_group_disagg: | |
| entity_group_disagg.append(entity) | |
| continue | |
| # If the current entity is similar and adjacent to the previous entity, | |
| # append it to the disaggregated entity group | |
| # The split is meant to account for the "B" and "I" prefixes | |
| # Shouldn't merge if both entities are B-type | |
| bi, tag = self.get_tag(entity["entity"]) | |
| last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"]) | |
| if tag == last_tag and bi != "B": | |
| # Modify subword type to be previous_type | |
| entity_group_disagg.append(entity) | |
| else: | |
| # If the current entity is different from the previous entity | |
| # aggregate the disaggregated entity group | |
| entity_groups.append(self.group_sub_entities(entity_group_disagg)) | |
| entity_group_disagg = [entity] | |
| if entity_group_disagg: | |
| # it's the last entity, add it to the entity groups | |
| entity_groups.append(self.group_sub_entities(entity_group_disagg)) | |
| return entity_groups | |
| NerPipeline = TokenClassificationPipeline | |